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Aims and questions

Study swimming micro-mechanisms

Swimming at low Reynolds number

What are the best mechanisms ?

Which shape?

Which propulsion mechanism ?

Self propulsion vs external propulsion...



E. Coli



Euglena



ESPCI (2005)

Head: Red blood cell

Tail: magnetic particles linked with DNA

Dreyfus et al, Nature 437(7060), 862–865, 2005



What is swimming?

Definition: “Ability to move inside or on water with appropriate periodic (stroke)
movements and without external forces

Control problem: Given a deformable body, is it possible to find an internal force law
that produces a periodic shape deformation that induces a displacement through the
fluid reaction?

Optimal control problem: If possible, how to swim the most efficiently possible?



Low Reynolds number

[
ρ
(
∂u
∂t + (u · ∇)u

)
− ν∆u +∇p = f ,

divu = 0

For a bacterium L ∼ 1µm,U ∼ 1µm/s and

Re =
ρUL
ν
∼ 10−6

Right model: Stokes equations [
−ν∆u +∇p = f ,
divu = 0
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Low Reynolds situations = ρUL
ν

In water, small sizes and velocities U, L� 1 (typical biological flows)

At human size, flows of viscous fluids ν � 1, (honey, silicon, etc.)

Extremely small velocities U �� 1 and/or extremely viscous fluids (e.g.:
glaciers)



Stokes equations


−ν∆U +∇P = 0
divU = 0
σn = f on the swimmer
U = US on the swimmer (non slip)

ν viscosity

U velocity

P pressure

σ = ν(∇U + (∇U)T )− P Id
Cauchy stress tensor.

f force density on the surface of
the swimmer.

Stokes equations are linear
⇒ f = L(ξ,p)US



Low Reynolds number flows

Re =
ρUL
ν
� 1

(Film: G. I. Taylor)



Reversibility

(Film: G. Blanchard, S. Calisti, S. Calvet, P. Fourment, C. Gluza, R. Leblanc, M.
Quillas-Saavedra)



The scallop theorem
Obstruction:[Purcell]
In Stokes regime, a reciprocal shape change induces no global motion

(Film: G. I. Taylor)



Summary

Micro-swimming⇒ Re ∼ 0

Stokes equations for the fluid (linear)

Flows are reversible (Scallop theorem)



The 3-link swimmer (Purcell)

Edward Mills Purcell
(1912 - 1997)



Setting of the problem

Low Reynolds number swimmers

Shape induced swimming

Self propulsion

Inertia is negligible{
Ftot = 0,
Ttot = 0 [Purcell]



Mathematical modelling

The swimmer is characterized by its shape ξ and its position p

Example: Purcell 3-link swimmer

ξ = (θ1, θ2),

p =position and orientation.

The swimmer can change shape⇒ ξ(t) pushing the fluid

The fluid reacts obeying Stokes equations pulling the swimmer⇒ p(t)



Mathematical modelling (cont’d)
The dynamics

ξ = the shape, p = the position

US is linear in ξ̇ and ṗ

⇒ f is linear in ξ̇ and ṗ

⇒ Ftot and Ttot are linear in ξ̇ and ṗ:(
Ftot
Ttot

)
= A(ξ, p)ṗ + B(ξ, p)ξ̇

ṗ = V (ξ, p)ξ̇
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⇒ Ftot and Ttot are linear in ξ̇ and ṗ:(
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Proof of the scallop theorem

The scallop has only one degree of freedom ξ. The system becomes

ξ̇ = α(t)

ṗ = V (ξ)ξ̇

and p =
∫ ξ V (y)dy =: W (ξ)

If ξ is periodic, so is p...
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The 3-sphere swimmer (Najafi & Golestanian)
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ξ1 ξ2

-
x1 x2 x3

p

(ξ1, ξ2) lengths or the arms, p position of central ball

By changing ξ1 and ξ2, the spheres impose forces f1, f2, f3 to the fluid with
f1 + f2 + f3 = 0

3 variables ξ1, ξ2, p and 2 control parameters

Velocities (and forces) are linear in ξ̇1, ξ̇2, ṗ

ṗ = V1(ξ, p/ )ξ̇1 + V2(ξ, p/ )ξ̇2



Dynamical system

ṗ = V1(ξ)ξ̇1 + V2(ξ)ξ̇2

∆p =

∫ T

0

(
V1(ξ)
V2(ξ)

)
·

dξ
dt

=

∫
ω

(
∂V2

∂ξ1
−
∂V1

∂ξ2

)
dσ, (due to Stokes’ theorem)



Holonomic vs nonholonomic constraints...

ṗ = V1(ξ)ξ̇1 + V2(ξ)ξ̇2

d
dt

 ξ1
ξ2
p


︸ ︷︷ ︸

state

= ξ̇1

 1
0

V1(ξ)

+ ξ̇2

 0
1

V2(ξ)

 = α1(t)g1(ξ) + α2(t)g2(ξ)

At (ξ1, ξ2, p), the trajectory is tangent to the plane (g1(ξ), g2(ξ))

p = W (ξ1, ξ2) ṗ = V1(ξ)ξ̇1 + V2(ξ)ξ̇2

equivalent if V = ∇ξW or curlV = ∂V2
∂ξ1
− ∂V1

∂ξ2
= 0
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The dynamical system

d
dt

 ξ1
ξ2
p


︸ ︷︷ ︸

state = X

= ξ̇1

 1
0

V1(ξ)

+ ξ̇2

 0
1

V2(ξ)

 = α1(t)g1(ξ) + α2(t)g2(ξ)

Ẋ = α1(t)g1(X) + α2(t)g2(X)

X = state (3D vector)

α1 and α2 are the controls (rate of shape changes)

g1, g2 : R3 → R3 vectorfields

⇒ Control Theory
(Is it possible to drive a system from an initial point to a final point with an appropriate
control?)



Controllability
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Control theory

Is it possible to drive a system from an initial point to a final point with an appropriate
control?

Take a system of the form {
Ẋ = f (X , α)
X(0) = X0

X = state, α = control(s)

For each control α(t) one can uniquely solve the equation on [0,T ] and the
system arrives at X(T ).

Question: Is it possible to describe the attainable set {X(T )} when α(t) varies?

The system is locally controllable if one can reach any point in a neighborhood of
X0 starting from X0 with a suitable control

The system is globally controllable if one can reach any point in the state space
starting from X0 with a suitable control



An example: A model car

Position (x , y) angle θ
Controls α1 = velocity , α2 = θ̇

dx
dt (t) = α1(t) cos(θ(t))
dy
dt (t) = α1(t) sin(θ(t))
dθ
dt (t) = α2(t)

⇒
d
dt

 x
y
θ

 = α1(t)

 cos(θ)
sin(θ)

0

+ α2(t)

 0
0
1





Lie brackets
Ẋ =

m∑
i=1

αi (t)gi (X), X ∈ Rn and m < n

We start from X(0) = X0,

Take α1 = 1 and αj = 0 for j 6= 1 during a time ε

X(ε) = X0 + εg1(X0) + O(ε2)

Similarly taking αi = 1 and αj = 0 for j 6= i during a time ε

X(ε) = X0 + εgi (X0) + O(ε2)

Take

(α1, α2) = (1, 0) on [0, ε[,

(α1, α2) = (0, 1) on [ε, 2ε[,

(α1, α2) = (−1, 0) on [2ε, 3ε[,

(α1, α2) = (0,−1) on [3ε, 4ε[.

then X(4ε) = X0 + ε2[g1, g2](X0) + O(ε3), where

[g1, g2] = (g1 · ∇)g2 − (g2 · ∇)g1

is the Lie bracket between g1 and g2 at X0.
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Ẋ =

m∑
i=1

αi (t)gi (X), X ∈ Rn and m < n

We start from X(0) = X0,

Take α1 = 1 and αj = 0 for j 6= 1 during a time ε

X(ε) = X0 + εg1(X0) + O(ε2)

Similarly taking αi = 1 and αj = 0 for j 6= i during a time ε

X(ε) = X0 + εgi (X0) + O(ε2)

Take

(α1, α2) = (1, 0) on [0, ε[,

(α1, α2) = (0, 1) on [ε, 2ε[,

(α1, α2) = (−1, 0) on [2ε, 3ε[,

(α1, α2) = (0,−1) on [3ε, 4ε[.

then X(4ε) = X0 + ε2[g1, g2](X0) + O(ε3), where

[g1, g2] = (g1 · ∇)g2 − (g2 · ∇)g1

is the Lie bracket between g1 and g2 at X0.



Lie brackets
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Lie brackets and car parking

 ẋ
ẏ
θ̇

 = α1(t)

 cos(θ)
sin(θ)

0

+ α2(t)

 0
0
1


= α1(t)g1(x , y , θ) + α2(t)g2(x , y , θ)

[g1, g2] = (g1 · ∇)g2 − (g2 · ∇)g1

= 0−
∂

∂θ
g1

=

 sin(θ)
− cos(θ)

0


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Chow’s theorem

Any Lie bracket generates a possibly new direction.

One can iterate Lie brackets to generate even more new directions. E.g.
[g1, [g1, g2]], [g3, [g1, [g1, g2]]], etc.

We call Lie(g1, · · · , gn)(X0) the Lie algebra generated by the vectorfields (g1, · · · , gn)
at X0 and iterated Lie brackets.

Chow’s theorem (1937) :

If dim(Lie(g1, · · · , gn)(X0) = dim(X), then the system is locally controlable at
X0. (One can reach any final point Xfinal in a neighborhood of the initial point X0
in any time).

If dim(Lie(g1, · · · , gn)(X0) = dim(X) for every initial point X0 then the system is
globally controlable (one can reach any final point Xfinal from any initial point X0
in any time).



Back to N.-G. swimmer
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ξ1 ξ2

-
x1 x2 x3

p

d
dt

 ξ1
ξ2
p


︸ ︷︷ ︸

state = X

= α1(t)

 1
0

V1(ξ)


︸ ︷︷ ︸

g1(X)

+α2(t)

 0
1

V2(ξ)


︸ ︷︷ ︸

g2(X)

[g1, g2] = (g1 · ∇)g2 − (g2 · ∇)g1 =

 0
0

∂V2
∂ξ1
− ∂V1

∂ξ2


Conclusion: The system is controlable (the NG swimmer can
swim) iff det(g1, g2, [g1, g2]) = ∂V2

∂ξ1
− ∂V1

∂ξ2
6= 0.



Other examples

[3-link swimmer (E. M. Purcell)]
[3-sphere swimmer (Najafi & Golestanian)]

[Purcell rotator (R. Dreyfus et al)] [Pushmepullyou (J. E. Avron)]
Ingredient: Looping in the shape space to produce a Lie bracket displacement...



Swimming with only one active arm

Passov & Or, EPJE 2012 Montino & DeSimone EPJE 2015



A control theorem

d
dt

 ξ1
ξ2
p

 = α1(t)g1(ξ) + α2(t)g2(ξ).

Theorem (DeSimone, Lefebvre, A.)
The 3-sphere swimmer is globally controllable.

From any state (ξi
1, ξ

i
2, p

i ), one can reach any other state (ξf
1, ξ

f
2, p

f ) with suitable force
laws (fj (t))j such that

∑
j fj (t) = 0 (or equivalently fonctions αj (t)).
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From any state (ξi
1, ξ

i
2, p
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f
2, p

f ) with suitable force
laws (fj (t))j such that

∑
j fj (t) = 0 (or equivalently fonctions αj (t)).



Euglena

Arroyo et al, PNAS 109(44) 2012



Other controllable systems (DeSimone, Lefebvre,
Merlet, A.)

3 controls, 3 first order Lie brackets 4 controls, 6 first order Lie brackets



Temporary conclusions

One possible way to overcome the scallop Theorem is

to loop in the shape space...

in order to generate Lie brackets...

that produce new directions for the dynamical system.

The displacement is proportional to the area (measured with curlV ) enclosed by
the loop
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in order to generate Lie brackets...

that produce new directions for the dynamical system.

The displacement is proportional to the area (measured with curlV ) enclosed by
the loop



Optimal swimming at low Re

Optimal parking problem?



Optimal Swimming at low Re

Goal: Find optimal swimming strategies.

We use Lighthill efficiency:

A stroke ξ(t) produces a displacement ∆p

Compare the energy expanded by the stroke to the one needed to pull the
swimmer by ∆p during the same time T .

Energy expanded =
∫ T

0 f · v dt

Energy needed to pull the swimmer = Cte T
(

∆p
T

)2
.

Efficiency−1 =
∫ T

0 f ·v dt

Cte T
(

∆p
T

)2

Maximizing the efficiency means finding the stroke(s) that produce a given
displacement ∆p during fixed time T (= 2π) and which miminum energy
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(Lighthill) Efficiency

Find a (the?) stroke that produces the displacement ∆p at least cost

Forces (fi )i depend linearly of the velocities (vi )i

Velocities depend linearly of (ξ̇, ṗ)

ṗ is linear in ξ̇

∫ 2π

0
f (t) · v(t) dt =

∫ 2π

0
(G(ξ)ξ̇(t), ξ̇(t)) dt

where G = (gij ) is a (dissipation) metric

Optimal strokes can be interpreted as geodesics (in a subRiemannian space).
They are closed loops in the shape space.
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subRiemannian geodesics

But ∆p =
∫ T

0 V (ξ) · dξ
dt =

∫
ω curl V dσ is fixed

and E =
∫ T

0 G(ξ)ξ̇ · ξ̇ dt → min

Isoperimetric problem

∆p = 0, ∆p = 0, ∆p 6= 0?



subRiemannian geodesics

Discretization (Approximation and/or Finite elements/BEM techniques)

Optimization (Handmade solving the geodesic equation and/or use Trilinos
optimization toolbox)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1

0.2

0.3

0.4

0.5

0.6

x

y

Initial point

Optimal stroke

Naive stroke

NG stroke
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

x

y

Initial point

Drop

Bean

Pretzel



Optimal NG Swimmer



Back to the Plane swimmer

3 arms making 120◦one to another

3 controls (extensible arms)

3 controllable changes of position (2 translation + 1 rotation)

What do optimal gaits look like?



Optimal Plane Swimmer (large strokes)

Alouges et al, DCDS - B,18(5),1189–1215, 2013
Difficult to analyze



Optimal Plane Swimmer (small strokes)

Position p = (x , y , θ) and Shape ξ = (ξ1, ξ2, ξ3)

The optimal stroke problem

Find minξ
∫ 2π

0 G(ξ)ξ̇(t) · ξ̇(t) dt under the constraints

ξ is 2π periodic

ṗ = V (ξ, p)ξ̇, and
∫ 2π

0 ṗ dt = ∆p is given
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Optimal Plane Swimmer

Difficulties
V (ξ, p) and G(ξ) are not explicit

The Euler-Lagrange equations of the optimization problem are highly nonlinear

Invariance and symmetries
V does not depend on x , y

V does depend on θ in a explicit way


(

ẋ
ẏ

)
=

(
Vx (ξ, θ)
Vy (ξ, θ)

)
ξ̇ = Rθ

(
Vx (ξ, 0)
Vy (ξ, 0)

)
ξ̇

θ̇ = Vθ(ξ)ξ̇

Consider small deformations near the symmetric shape ξ0 = (l0, l0, l0) and
linearize everything

Vi (ξ) ∼ Vi (ξ0) +∇ξVi (ξ0) · δξ
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Symmetries



Expansions

Assume |δξ|, |δ̇ξ| ∼ ε� 1
The symmetric shape ξ0 furthermore implies that

Vθ(ξ0) = 0

To leading order, one has θ̇ = ∇ξVθ(ξ0)δξδ̇ξ Assuming θ(0) = 0, one deduces
θ(t) = O(ε2)

And finally (
ẋ
ẏ

)
=

(
Vx (ξ0) +∇ξVx (ξ0)δξ
Vy (ξ0) +∇ξVy (ξ0)δξ

)
δ̇ξ + O(ε3)

Integrating over a period gives



∆x =

∫ 2π

0
(∇ξVx )skew(ξ0)δξ · δ̇ξ dt + O(ε3)

∆y =

∫ 2π

0
(∇ξVy )skew(ξ0)δξ · δ̇ξ dt + O(ε3)

∆θ =

∫ 2π

0
(∇ξVθ)skew(ξ0)δξ · δ̇ξ dt + O(ε3)
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Symmetry arguments show that ∃α, γ s.t.

(∇ξVx )skew(ξ0) =

 0 α α
−α 0 0
−α 0 0

 , (∇ξVy )skew(ξ0) =
1
√

3

 0 α −α
−α 0 −2α
α 2α 0

 ,

(∇ξVθ)skew(ξ0) =

 0 γ −γ
−γ 0 γ
γ −γ 0


In other words 

∆x = τx ·
∫ 2π

0
δξ ∧ δ̇ξ dt + O(ε3)

∆y = τy ·
∫ 2π

0
δξ ∧ δ̇ξ dt + O(ε3)

∆θ = τθ ·
∫ 2π

0
δξ ∧ δ̇ξ dt + O(ε3)

where τx = α

 0
−1
1

, τy =
α
√

3

 −2
1
1

 and τθ = γ

 1
1
1


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Optimal Plane Swimmer (small strokes) (DiFratta, A.)

Similarly, symmetry reasons show that

G(ξ0) =

 κ ρ ρ
ρ κ ρ
ρ ρ κ



In the regime of small strokes near the shape (ξ0, ξ0, ξ0), an optimal stroke is a
planar ellipse E (in the 3d shape space).

The respective displacements in x , y , θ of the swimmer after one stroke are
obtained by computing the flux through E of the vectors

τx = α(0,−1, 1), τy =
α
√

3
(−2, 1, 1), τθ = γ(1, 1, 1)

Complete characterization of the optimal (small) stroke that provides a prescribed
displacement.



Optimal strokes



Optimal Plane Swimmer (small strokes)



The 4 sphere swimmer

More involved:

4 controls

6 dimensions to control (3 translations, 3 rotations)



The 4 sphere swimmer



Same strategy...



∆x = τx ·
∫ 2π

0
δξ ∧ δ̇ξ dt + O(ε3)

∆y = τy ·
∫ 2π

0
δξ ∧ δ̇ξ dt + O(ε3)

∆z = τz ·
∫ 2π

0
δξ ∧ δ̇ξ dt + O(ε3)



∆R1 = τ1 ·
∫ 2π

0
δξ ∧ δ̇ξ dt + O(ε3)

∆R2 = τ2 ·
∫ 2π

0
δξ ∧ δ̇ξ dt + O(ε3)

∆R3 = τ3 ·
∫ 2π

0
δξ ∧ δ̇ξ dt + O(ε3)

where τx , τy , τz , τ1, τ2, τ3 are now... bivectors (explicit though)



2 optimal trajectories

Pure rotation along z Translation along z and rotation along z



What changes?

Complete characterization

Optimal (small) strokes are described by

ξ(t) = cos(t)u1 + sin(t)v1 + cos(2t)u2 + sin(2t)v2

Depending on the objective ∆p one may have:

planar strokes (u2 = v2 = 0)
non planar strokes (general case)
infinitely many optimal strokes



Conclusion

Complete understanding of optimal swimming (by shape deformation) for simple
mechanisms

Loop in a suitable space of deformations⇒ moves the system following a Lie
bracket

Optimal gaits are optimal loops

In the regime of small deformations, it is possible to characterize them




