Optimally swimming mechanisms at low Reynolds number

François Alouges

Joint works with A. DeSimone, G. DiFratta, L. Heltai, A. Lefebvre, B. Merlet, P. Weder...

> Ecole polytechnique Centre de Mathématiques Appliquées

> > 2021 October 27 - Fréjus

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Aims and questions

Study swimming micro-mechanisms

Swimming at low Reynolds number

<ロト 4 目 ト 4 目 ト 4 目 ト 目 9 9 0 0</p>

- What are the best mechanisms ?
- Which shape?
- Which propulsion mechanism ?
- Self propulsion vs external propulsion...

E. Coli

イロト イロト イヨト イヨト 三日

590

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

- Head: Red blood cell
- Tail: magnetic particles linked with DNA

Dreyfus et al, Nature 437(7060), 862-865, 2005

What is swimming?

Definition: "Ability to move inside or on water with appropriate periodic (stroke) movements and without external forces

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Control problem: Given a deformable body, is it possible to find an internal force law that produces a periodic shape deformation that induces a displacement through the fluid reaction?

Optimal control problem: If possible, how to swim the most efficiently possible?

Low Reynolds number

$$\begin{bmatrix} \rho \left(\frac{\partial u}{\partial t} + (u \cdot \nabla) u \right) - \nu \Delta u + \nabla p = f, \\ \operatorname{div} u = 0 \end{bmatrix}$$

For a bacterium $L \sim 1 \mu m, U \sim 1 \mu m/s$ and

$${\it Re}=rac{
ho\,{\it UL}}{
u}\sim 10^{-6}$$

Right model: Stokes equations

$$-\nu\Delta u + \nabla p = f,$$

div $u = 0$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Low Reynolds number

$$\begin{bmatrix} \rho\left(\frac{\partial u}{\partial t} + (u \cdot \nabla)u\right) - \nu \Delta u + \nabla p = f, \\ \operatorname{div} u = 0 \end{bmatrix}$$

For a bacterium $L \sim 1 \mu m, U \sim 1 \mu m/s$ and

$${\it Re}=rac{
ho {\it UL}}{
u}\sim 10^{-6}$$

Right model: Stokes equations

$$-\nu\Delta u + \nabla p = f,$$

div $u = 0$

(ロ)、

Low Reynolds situations $= \frac{\rho UL}{\nu}$

- In water, small sizes and velocities $U, L \ll 1$ (typical biological flows)
- At human size, flows of viscous fluids $\nu \gg 1$, (honey, silicon, etc.)
- Extremely small velocities U « 1 and/or extremely viscous fluids (e.g.: glaciers)

Stokes equations

 $\left\{ \begin{array}{l} -\nu\Delta U+\nabla P=0\\ {\rm div}\,U=0\\ \sigma\,n=f \mbox{ on the swimmer}\\ U=U_{\rm S}\mbox{ on the swimmer (non slip)} \end{array} \right.$

- ν viscosity
- U velocity
- P pressure
- $\sigma = \nu (\nabla U + (\nabla U)^T) P Id$ Cauchy stress tensor.
- *f* force density on the surface of the swimmer.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Stokes equations are linear

 $\Rightarrow f = \mathcal{L}_{(\xi,p)} U_S$

Low Reynolds number flows

$${\it Re}=rac{
ho {\it UL}}{
u}\ll 1$$

ヘロト 人間 トイヨト イヨト 三日

999

(Film: G. I. Taylor)

Reversibility

(Film: G. Blanchard, S. Calisti, S. Calvet, P. Fourment, C. Gluza, R. Leblanc, M. Quillas-Saavedra)

999

The scallop theorem

Obstruction:[Purcell]

In Stokes regime, a reciprocal shape change induces no global motion

・ロット (雪) (日) (日) (日)

996

(Film: G. I. Taylor)

Summary

- Micro-swimming \Rightarrow $Re \sim 0$
- Stokes equations for the fluid (linear)
- Flows are reversible (Scallop theorem)

The 3-link swimmer (Purcell)

Edward Mills Purcell (1912 - 1997)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣へで

Setting of the problem

- Low Reynolds number swimmers
- Shape induced swimming
- Self propulsion
- Inertia is negligible

$$\left\{ \begin{array}{l} F_{tot}=0,\\ T_{tot}=0 \end{array} \right.$$

[Purcell]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Mathematical modelling

• The swimmer is characterized by its shape ξ and its position p

Example: Purcell 3-link swimmer

•
$$\xi = (\theta_1, \theta_2),$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- The swimmer can change shape $\Rightarrow \xi(t)$ pushing the fluid
- The fluid reacts obeying Stokes equations pulling the swimmer $\Rightarrow p(t)$

Mathematical modelling (cont'd) The dynamics

- ξ = the shape, p = the position
- U_S is linear in $\dot{\xi}$ and \dot{p}
- \Rightarrow *f* is linear in $\dot{\xi}$ and \dot{p}
- \Rightarrow F_{tot} and T_{tot} are linear in $\dot{\xi}$ and \dot{p} :

$$\begin{pmatrix} F_{tot} \\ T_{tot} \end{pmatrix} = A(\xi, p)\dot{p} + B(\xi, p)\dot{\xi}$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

 $\dot{p} = V(\xi, p)\dot{\xi}$

Mathematical modelling (cont'd) The dynamics

- ξ = the shape, p = the position
- U_S is linear in $\dot{\xi}$ and \dot{p}
- \Rightarrow *f* is linear in $\dot{\xi}$ and \dot{p}
- \Rightarrow F_{tot} and T_{tot} are linear in $\dot{\xi}$ and \dot{p} :

$$\begin{pmatrix} F_{tot} \\ T_{tot} \end{pmatrix} = A(\xi, p)\dot{p} + B(\xi, p)\dot{\xi}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 $\dot{p} = V(\xi, p)\dot{\xi}$

Proof of the scallop theorem

The scallop has only one degree of freedom ξ . The system becomes

$$\dot{\xi} = \alpha(t)$$

 $\dot{p} = V(\xi)\dot{\xi}$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

and $p = \int^{\xi} V(y) dy =: W(\xi)$

If ξ is periodic, so is p...

Proof of the scallop theorem

The scallop has only one degree of freedom ξ . The system becomes

$$\dot{\xi} = \alpha(t)$$

 $\dot{p} = V(\xi)\dot{\xi}$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

and $p = \int^{\xi} V(y) dy =: W(\xi)$

If ξ is periodic, so is p...

The 3-sphere swimmer (Najafi & Golestanian)

- (ξ_1, ξ_2) lengths or the arms, *p* position of central ball
- By changing ξ_1 and ξ_2 , the spheres impose forces f_1 , f_2 , f_3 to the fluid with $f_1 + f_2 + f_3 = 0$
- 3 variables ξ_1, ξ_2, p and 2 control parameters
- Velocities (and forces) are linear in $\dot{\xi}_1$, $\dot{\xi}_2$, \dot{p}

$$\dot{p} = V_1(\xi, p)\dot{\xi}_1 + V_2(\xi, p)\dot{\xi}_2$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Dynamical system

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

 $\dot{p} = V_1(\xi)\dot{\xi}_1 + V_2(\xi)\dot{\xi}_2$

$$\frac{d}{dt}\underbrace{\begin{pmatrix} \xi_1\\ \xi_2\\ p \end{pmatrix}}_{\text{state}} = \dot{\xi}_1 \begin{pmatrix} 1\\ 0\\ V_1(\xi) \end{pmatrix} + \dot{\xi}_2 \begin{pmatrix} 0\\ 1\\ V_2(\xi) \end{pmatrix} = \alpha_1(t)g_1(\xi) + \alpha_2(t)g_2(\xi)$$

At (ξ_1, ξ_2, p) , the trajectory is tangent to the plane $(g_1(\xi), g_2(\xi))$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 「豆」のへで

 $\dot{p} = V_1(\xi)\dot{\xi}_1 + V_2(\xi)\dot{\xi}_2$

$$\frac{d}{dt}\underbrace{\begin{pmatrix}\xi_1\\\xi_2\\p\\\\\\state\end{pmatrix}}_{state} = \dot{\xi}_1 \begin{pmatrix}1\\0\\V_1(\xi)\end{pmatrix} + \dot{\xi}_2 \begin{pmatrix}0\\1\\V_2(\xi)\end{pmatrix} = \alpha_1(t)g_1(\xi) + \alpha_2(t)g_2(\xi)$$

At (ξ_1, ξ_2, p) , the trajectory is tangent to the plane $(g_1(\xi), g_2(\xi))$

・ロト・日本・日本・日本・日本・日本

 $\dot{p} = V_1(\xi)\dot{\xi}_1 + V_2(\xi)\dot{\xi}_2$

At (ξ_1, ξ_2, p) , the trajectory is tangent to the plane $(g_1(\xi), g_2(\xi))$

 $\dot{p} = V_1(\xi)\dot{\xi}_1 + V_2(\xi)\dot{\xi}_2$

At (ξ_1, ξ_2, p) , the trajectory is tangent to the plane $(g_1(\xi), g_2(\xi))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

The dynamical system

$$\frac{d}{dt}\underbrace{\begin{pmatrix}\xi_1\\\xi_2\\p\\\\\text{state}=X\end{pmatrix}}_{\text{state}=X} = \dot{\xi}_1\begin{pmatrix}1\\0\\V_1(\xi)\end{pmatrix} + \dot{\xi}_2\begin{pmatrix}0\\1\\V_2(\xi)\end{pmatrix} = \alpha_1(t)g_1(\xi) + \alpha_2(t)g_2(\xi)$$

 $\dot{X} = \alpha_1(t)g_1(X) + \alpha_2(t)g_2(X)$

- α₁ and α₂ are the controls (rate of shape changes)
- $g_1, g_2 : \mathbb{R}^3 \to \mathbb{R}^3$ vectorfields

\Rightarrow Control Theory

(Is it possible to drive a system from an initial point to a final point with an appropriate control?)

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Controllability

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Control theory

Is it possible to drive a system from an initial point to a final point with an appropriate control?

Take a system of the form

$$\dot{X} = f(X, \alpha)$$
$$X(0) = X_0$$

X =state, $\alpha =$ control(s)

- For each control α(t) one can uniquely solve the equation on [0, T] and the system arrives at X(T).
- Question: Is it possible to describe the attainable set $\{X(T)\}$ when $\alpha(t)$ varies?
- The system is locally controllable if one can reach any point in a neighborhood of X₀ starting from X₀ with a suitable control
- The system is globally controllable if one can reach any point in the state space starting from X₀ with a suitable control

An example: A model car

Position (*x*, *y*) angle θ Controls $\alpha_1 =$ *velocity*, $\alpha_2 = \dot{\theta}$

$$\begin{cases} \frac{dx}{dt}(t) = \alpha_1(t)\cos(\theta(t)) \\ \frac{dy}{dt}(t) = \alpha_1(t)\sin(\theta(t)) \\ \frac{d\theta}{dt}(t) = \alpha_2(t) \end{cases} \Rightarrow \frac{d}{dt} \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} = \alpha_1(t) \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \\ 0 \end{pmatrix} + \alpha_2(t) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

$$\dot{X} = \sum_{i=1}^m lpha_i(t) g_i(X), \,\, X \in \mathbb{R}^n ext{ and } m < n$$

We start from $X(0) = X_0$,

• Take $\alpha_1 = 1$ and $\alpha_j = 0$ for $j \neq 1$ during a time ε

 $X(\varepsilon) = X_0 + \varepsilon g_1(X_0) + O(\varepsilon^2)$

• Similarly taking $\alpha_i = 1$ and $\alpha_j = 0$ for $j \neq i$ during a time ε

$$X(\varepsilon) = X_0 + \varepsilon g_i(X_0) + O(\varepsilon^2)$$

3

Take

$$\begin{aligned} (\alpha_1, \alpha_2) &= (1, 0) \quad \text{on} \quad [0, \varepsilon[, \\ (\alpha_1, \alpha_2) &= (0, 1) \quad \text{on} \quad [\varepsilon, 2\varepsilon[, \\ (\alpha_1, \alpha_2) &= (-1, 0) \quad \text{on} \quad [2\varepsilon, 3\varepsilon[, \\ (\alpha_1, \alpha_2) &= (0, -1) \quad \text{on} \quad [3\varepsilon, 4\varepsilon[. \\ \text{then } X(4\varepsilon) &= X_0 + \varepsilon^2[g_1, g_2](X_0) + O(\varepsilon^3), \text{ where} \\ & [g_1, g_2] &= (g_1 \cdot \nabla)g_2 - (g_2 \cdot \nabla)g_1 \end{aligned}$$
is the Lie bracket between g_1 and g_2 at X_0 .

$$\dot{X} = \sum_{i=1}^m lpha_i(t) g_i(X), \,\, X \in \mathbb{R}^n ext{ and } m < n$$

We start from $X(0) = X_0$,

• Take $\alpha_1 = 1$ and $\alpha_j = 0$ for $j \neq 1$ during a time ε

$$X(\varepsilon) = X_0 + \varepsilon g_1(X_0) + O(\varepsilon^2)$$

• Similarly taking $\alpha_i = 1$ and $\alpha_j = 0$ for $j \neq i$ during a time ε

$$X(\varepsilon) = X_0 + \varepsilon g_i(X_0) + O(\varepsilon^2)$$

Take

$$\begin{aligned} (\alpha_1, \alpha_2) &= (1, 0) \quad \text{on} \quad [0, \varepsilon[, \\ (\alpha_1, \alpha_2) &= (0, 1) \quad \text{on} \quad [\varepsilon, 2\varepsilon[, \\ (\alpha_1, \alpha_2) &= (-1, 0) \quad \text{on} \quad [2\varepsilon, 3\varepsilon[, \\ (\alpha_1, \alpha_2) &= (0, -1) \quad \text{on} \quad [3\varepsilon, 4\varepsilon[. \\ \end{aligned}$$
then $X(4\varepsilon) &= X_0 + \varepsilon^2 [g_1, g_2](X_0) + O(\varepsilon^3)$, where
$$[g_1, g_2] &= (g_1 \cdot \nabla)g_2 - (g_2 \cdot \nabla)g_1$$
is the Lie bracket between g_1 and g_2 at X_0 .

$$\dot{X} = \sum_{i=1}^m lpha_i(t) g_i(X), \,\, X \in \mathbb{R}^n ext{ and } m < n$$

We start from $X(0) = X_0$,

• Take $\alpha_1 = 1$ and $\alpha_j = 0$ for $j \neq 1$ during a time ε

$$X(\varepsilon) = X_0 + \varepsilon g_1(X_0) + O(\varepsilon^2)$$

• Similarly taking $\alpha_i = 1$ and $\alpha_j = 0$ for $j \neq i$ during a time ε

$$X(\varepsilon) = X_0 + \varepsilon g_i(X_0) + O(\varepsilon^2)$$

Take

$$\begin{array}{ll} (\alpha_1, \alpha_2) = (1, 0) & \text{on} & [0, \varepsilon[, \\ (\alpha_1, \alpha_2) = (0, 1) & \text{on} & [\varepsilon, 2\varepsilon[, \\ (\alpha_1, \alpha_2) = (-1, 0) & \text{on} & [2\varepsilon, 3\varepsilon[, \\ (\alpha_1, \alpha_2) = (0, -1) & \text{on} & [3\varepsilon, 4\varepsilon[. \end{array}$$

then $X(4\varepsilon) = X_0 + \varepsilon^2[g_1, g_2](X_0) + O(\varepsilon^3)$, where

$$[g_1,g_2]=(g_1\cdot\nabla)g_2-(g_2\cdot\nabla)g_1$$

is the Lie bracket between g_1 and g_2 at X_0 .

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

$$\dot{X} = \sum_{i=1}^m lpha_i(t) g_i(X), \,\, X \in \mathbb{R}^n ext{ and } m < n$$

We start from $X(0) = X_0$,

• Take $\alpha_1 = 1$ and $\alpha_j = 0$ for $j \neq 1$ during a time ε

$$X(\varepsilon) = X_0 + \varepsilon g_1(X_0) + O(\varepsilon^2)$$

• Similarly taking $\alpha_i = 1$ and $\alpha_j = 0$ for $j \neq i$ during a time ε

$$X(\varepsilon) = X_0 + \varepsilon g_i(X_0) + O(\varepsilon^2)$$

Take

$$\begin{aligned} (\alpha_1, \alpha_2) &= (1, 0) \quad \text{on} \quad [0, \varepsilon[, \\ (\alpha_1, \alpha_2) &= (0, 1) \quad \text{on} \quad [\varepsilon, 2\varepsilon[, \\ (\alpha_1, \alpha_2) &= (-1, 0) \quad \text{on} \quad [2\varepsilon, 3\varepsilon[, \\ (\alpha_1, \alpha_2) &= (0, -1) \quad \text{on} \quad [3\varepsilon, 4\varepsilon[. \\ \end{aligned}$$
then $X(4\varepsilon) = X_0 + \varepsilon^2 [g_1, g_2](X_0) + O(\varepsilon^3)$, where
$$[g_1, g_2] &= (g_1 \cdot \nabla)g_2 - (g_2 \cdot \nabla)g_1$$
is the Lie bracket between g_1 and g_2 at X_0 .

Lie brackets and car parking

 motion forward

motion
 backward

2. rotation counterclockwise

4. rotation clockwise

$$) = \alpha_1(t) \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \\ 0 \end{pmatrix} + \alpha_2(t) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \alpha_1(t)g_1(x, y, \theta) + \alpha_2(t)g_2(x, y, \theta)$$

$$\begin{array}{ll} [g_1,g_2] &=& (g_1\cdot\nabla)g_2 - (g_2\cdot\nabla)g_1 \\ &=& 0 - \frac{\partial}{\partial\theta}g_1 \\ &=& \begin{pmatrix} \sin(\theta) \\ -\cos(\theta) \\ 0 \end{pmatrix} \end{array}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ 釣�?
Lie brackets and car parking

 motion forward

3. motion backward

2. rotation counterclockwise

4. rotation clockwise

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} = \alpha_1(t) \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \\ 0 \end{pmatrix} + \alpha_2(t) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
$$= \alpha_1(t)g_1(x, y, \theta) + \alpha_2(t)g_2(x, y, \theta)$$

$$\begin{array}{lll} [g_1,g_2] &=& (g_1\cdot\nabla)g_2-(g_2\cdot\nabla)g_1\\ &=& 0-\frac{\partial}{\partial\theta}g_1\\ &=& \left(\begin{array}{c} \sin(\theta)\\ -\cos(\theta)\\ 0\end{array}\right) \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Chow's theorem

- Any Lie bracket generates a possibly new direction.
- One can iterate Lie brackets to generate even more new directions. E.g. $[g_1, [g_1, g_2]], [g_3, [g_1, [g_1, g_2]]]$, etc.

We call $Lie(g_1, \dots, g_n)(X_0)$ the Lie algebra generated by the vectorfields (g_1, \dots, g_n) at X_0 and iterated Lie brackets.

Chow's theorem (1937) :

- If $dim(Lie(g_1, \dots, g_n)(X_0) = dim(X)$, then the system is locally controlable at X_0 . (One can reach any final point X_{final} in a neighborhood of the initial point X_0 in any time).
- If dim(Lie(g₁,...,g_n)(X₀) = dim(X) for every initial point X₀ then the system is globally controlable (one can reach any final point X_{final} from any initial point X₀ in any time).

Back to N.-G. swimmer

◆ロト ◆個 ト ◆ ヨト ◆ ヨト ・ ヨー ・ のへぐ

Other examples

[3-link swimmer (E. M. Purcell)]

[3-sphere swimmer (Najafi & Golestanian)]

[Purcell rotator (R. Dreyfus et al)] [Pushmepullyou (J. E. Avron)] Ingredient: Looping in the shape space to produce a Lie bracket displacement...

・ロト・日本・日本・日本・日本・日本

Swimming with only one active arm

Passov & Or, EPJE 2012

イロト イポト イヨト イヨト

ъ

Montino & DeSimone EPJE 2015

A control theorem

$$\frac{d}{dt} \begin{pmatrix} \xi_1 \\ \xi_2 \\ p \end{pmatrix} = \alpha_1(t)g_1(\xi) + \alpha_2(t)g_2(\xi).$$

Theorem (DeSimone, Lefebvre, A.)

The 3-sphere swimmer is globally controllable.

From any state (ξ_1^i, ξ_2^i, p^i) , one can reach any other state (ξ_1^i, ξ_2^f, p^i) with suitable force laws $(f_i(t))_i$ such that $\sum_i f_i(t) = 0$ (or equivalently fonctions $\alpha_i(t)$).

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

A control theorem

$$\frac{d}{dt} \begin{pmatrix} \xi_1 \\ \xi_2 \\ p \end{pmatrix} = \alpha_1(t)g_1(\xi) + \alpha_2(t)g_2(\xi).$$

Theorem (DeSimone, Lefebvre, A.)

The 3-sphere swimmer is globally controllable.

From any state (ξ_1^i, ξ_2^i, p^i) , one can reach any other state (ξ_1^f, ξ_2^f, p^f) with suitable force laws $(f_j(t))_j$ such that $\sum_j f_j(t) = 0$ (or equivalently fonctions $\alpha_j(t)$).

Arroyo et al, PNAS 109(44) 2012

・ロト・西ト・山田・山田・山口・

Other controllable systems (DeSimone, Lefebvre, Merlet, A.)

3 controls, 3 first order Lie brackets

4 controls, 6 first order Lie brackets

▲□▶▲□▶▲□▶▲□▶ ■ のへで

One possible way to overcome the scallop Theorem is

• to loop in the shape space...

- in order to generate Lie brackets...
- that produce new directions for the dynamical system.
- The displacement is proportional to the area (measured with curl V) enclosed by the loop

One possible way to overcome the scallop Theorem is

- to loop in the shape space...
- in order to generate Lie brackets...
- that produce new directions for the dynamical system.
- The displacement is proportional to the area (measured with curl V) enclosed by the loop

One possible way to overcome the scallop Theorem is

- to loop in the shape space...
- in order to generate Lie brackets...
- that produce new directions for the dynamical system.
- The displacement is proportional to the area (measured with curl *V*) enclosed by the loop

One possible way to overcome the scallop Theorem is

- to loop in the shape space...
- in order to generate Lie brackets...
- that produce new directions for the dynamical system.
- The displacement is proportional to the area (measured with curl *V*) enclosed by the loop

Optimal swimming at low Re

Optimal parking problem?

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Optimal Swimming at low Re

Goal: Find optimal swimming strategies.

We use Lighthill efficiency:

- A stroke $\xi(t)$ produces a displacement Δp
- Compare the energy expanded by the stroke to the one needed to pull the swimmer by Δp during the same time T.

Energy expanded = $\int_0^T f \cdot v \, dt$

Energy needed to pull the swimmer = Cte $T\left(\frac{\Delta p}{T}\right)^2$

$$\mathsf{Efficiency}^{-1} = \frac{\int_0^T f \cdot v \, dt}{Cte \, T \left(\frac{\Delta p}{T}\right)^2}$$

Maximizing the efficiency means finding the stroke(s) that produce a given displacement Δp during fixed time $T(=2\pi)$ and which mininum energy

Optimal Swimming at low Re

Goal: Find optimal swimming strategies.

We use Lighthill efficiency:

- A stroke $\xi(t)$ produces a displacement Δp
- Compare the energy expanded by the stroke to the one needed to pull the swimmer by Δp during the same time T.

Energy expanded = $\int_0^T f \cdot v \, dt$

Energy needed to pull the swimmer = Cte $T\left(\frac{\Delta p}{T}\right)^{2}$.

Efficiency⁻¹ =
$$\frac{\int_0^T f \cdot v \, dt}{Cte \, T \left(\frac{\Delta p}{T}\right)^2}$$

Maximizing the efficiency means finding the stroke(s) that produce a given displacement Δp during fixed time $T(=2\pi)$ and which miminum energy

Optimal Swimming at low Re

Goal: Find optimal swimming strategies.

We use Lighthill efficiency:

- A stroke $\xi(t)$ produces a displacement Δp
- Compare the energy expanded by the stroke to the one needed to pull the swimmer by Δp during the same time T.

Energy expanded = $\int_0^T f \cdot v \, dt$

Energy needed to pull the swimmer = Cte $T\left(\frac{\Delta \rho}{T}\right)^2$.

$$\mathsf{Efficiency}^{-1} = \frac{\int_0^T f \cdot v \, dt}{Cte \, T \left(\frac{\Delta p}{T}\right)^2}$$

Maximizing the efficiency means finding the stroke(s) that produce a given displacement Δp during fixed time $T(=2\pi)$ and which miminum energy

(Lighthill) Efficiency

Find a (the?) stroke that produces the displacement Δp at least cost

- Forces (f_i)_i depend linearly of the velocities (v_i)_i
- Velocities depend linearly of $(\dot{\xi}, \dot{p})$
- \dot{p} is linear in $\dot{\xi}$

$$\int_{0}^{2\pi} f(t) \cdot v(t) \, dt = \int_{0}^{2\pi} (G(\xi) \dot{\xi}(t), \dot{\xi}(t)) \, dt$$

where $G = (g_{ij})$ is a (dissipation) metric

 Optimal strokes can be interpreted as geodesics (in a subRiemannian space). They are closed loops in the shape space.

▲□▶▲□▶▲□▶▲□▶ □ のQで

(Lighthill) Efficiency

Find a (the?) stroke that produces the displacement Δp at least cost

- Forces (f_i)_i depend linearly of the velocities (v_i)_i
- Velocities depend linearly of $(\dot{\xi}, \dot{p})$
- \dot{p} is linear in $\dot{\xi}$

$$\int_0^{2\pi} f(t) \cdot v(t) \, dt = \int_0^{2\pi} (G(\xi) \dot{\xi}(t), \dot{\xi}(t)) \, dt$$

where $G = (g_{ij})$ is a (dissipation) metric

• Optimal strokes can be interpreted as geodesics (in a subRiemannian space). They are closed loops in the shape space.

subRiemannian geodesics

But $\Delta p = \int_0^T V(\xi) \cdot \frac{d\xi}{dt} = \int_\omega \text{curl } V \, d\sigma \text{ is fixed}$ and $E = \int_0^T G(\xi) \dot{\xi} \cdot \dot{\xi} \, dt \to \min$ Isoperimetric problem

 $\Delta p = 0, \qquad \Delta p = 0, \qquad \Delta p \neq 0?$

subRiemannian geodesics

- Discretization (Approximation and/or Finite elements/BEM techniques)
- Optimization (Handmade solving the geodesic equation and/or use Trilinos optimization toolbox)

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Optimal NG Swimmer

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Back to the Plane swimmer

- 3 arms making 120° one to another
- 3 controls (extensible arms)
- 3 controllable changes of position (2 translation + 1 rotation)

What do optimal gaits look like?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

Optimal Plane Swimmer (large strokes)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Alouges et al, DCDS - B,18(5),1189–1215, 2013 Difficult to analyze

Optimal Plane Swimmer (small strokes)

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Position $p = (x, y, \theta)$ and Shape $\xi = (\xi_1, \xi_2, \xi_3)$

The optimal stroke problem

Find min $_{\xi} \int_{0}^{2\pi} G(\xi) \dot{\xi}(t) \cdot \dot{\xi}(t) dt$ under the constraints

• ξ is 2π periodic

•
$$\dot{p} = V(\xi, p)\dot{\xi}$$
, and $\int_0^{2\pi} \dot{p} \, dt = \Delta p$ is given

Optimal Plane Swimmer (small strokes)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Position $p = (x, y, \theta)$ and Shape $\xi = (\xi_1, \xi_2, \xi_3)$

The optimal stroke problem

Find $\min_{\xi} \int_{0}^{2\pi} G(\xi) \dot{\xi}(t) \cdot \dot{\xi}(t) dt$ under the constraints

• ξ is 2π periodic

•
$$\dot{p} = V(\xi, p)\dot{\xi}$$
, and $\int_0^{2\pi} \dot{p} dt = \Delta p$ is given

Optimal Plane Swimmer

Difficulties

- $V(\xi, p)$ and $G(\xi)$ are not explicit
- The Euler-Lagrange equations of the optimization problem are highly nonlinear

Invariance and symmetries

- V does not depend on x, y
- V does depend on θ in a explicit way

$$\left\{ \begin{array}{c} \left(\begin{array}{c} \dot{x} \\ \dot{y} \end{array} \right) = \left(\begin{array}{c} V_x(\xi,\theta) \\ V_y(\xi,\theta) \end{array} \right) \dot{\xi} = R_\theta \left(\begin{array}{c} V_x(\xi,0) \\ V_y(\xi,0) \end{array} \right) \dot{\xi} \\ \dot{\theta} = V_\theta(\xi) \dot{\xi} \end{array} \right.$$

• Consider small deformations near the symmetric shape $\xi_0 = (l_0, l_0, l_0)$ and linearize everything

$$V_i(\xi) \sim V_i(\xi_0) + \nabla_{\xi} V_i(\xi_0) \cdot \delta \xi$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Optimal Plane Swimmer

Difficulties

- $V(\xi, p)$ and $G(\xi)$ are not explicit
- The Euler-Lagrange equations of the optimization problem are highly nonlinear

Invariance and symmetries

- V does not depend on x, y
- V does depend on θ in a explicit way

$$\begin{cases} \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} V_x(\xi,\theta) \\ V_y(\xi,\theta) \end{pmatrix} \dot{\xi} = R_\theta \begin{pmatrix} V_x(\xi,0) \\ V_y(\xi,0) \end{pmatrix} \dot{\xi} \\ \dot{\theta} = V_\theta(\xi) \dot{\xi} \end{cases}$$

• Consider small deformations near the symmetric shape $\xi_0 = (l_0, l_0, l_0)$ and linearize everything

$$V_i(\xi) \sim V_i(\xi_0) + \nabla_{\xi} V_i(\xi_0) \cdot \delta \xi$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Symmetries

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Expansions

Assume $|\delta\xi|, |\dot{\delta\xi}| \sim \epsilon \ll 1$

The symmetric shape ξ_0 furthermore implies that

• $V_{\theta}(\xi_0) = 0$

• To leading order, one has $\dot{\theta} = \nabla_{\xi} V_{\theta}(\xi_0) \delta \xi \delta \xi$ Assuming $\theta(0) = 0$, one deduces $\theta(t) = O(\epsilon^2)$

And finally

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} V_x(\xi_0) + \nabla_{\xi} V_x(\xi_0) \delta\xi \\ V_y(\xi_0) + \nabla_{\xi} V_y(\xi_0) \delta\xi \end{pmatrix} \dot{\delta\xi} + O(\epsilon^3)$$

Integrating over a period gives

$$\begin{cases} \Delta x = \int_{0}^{2\pi} (\nabla_{\xi} V_{x})_{\text{skew}}(\xi_{0}) \delta \xi \cdot \dot{\delta} \xi \, dt + O(\epsilon^{3}) \\ \Delta y = \int_{0}^{2\pi} (\nabla_{\xi} V_{y})_{\text{skew}}(\xi_{0}) \delta \xi \cdot \dot{\delta} \xi \, dt + O(\epsilon^{3}) \\ \Delta \theta = \int_{0}^{2\pi} (\nabla_{\xi} V_{\theta})_{\text{skew}}(\xi_{0}) \delta \xi \cdot \dot{\delta} \xi \, dt + O(\epsilon^{3}) \end{cases}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Expansions

Assume $|\delta\xi|, |\dot{\delta\xi}| \sim \epsilon \ll 1$ The symmetric shape ξ_0 furthermore implies that

• $V_{\theta}(\xi_0) = 0$

• To leading order, one has $\dot{\theta} = \nabla_{\xi} V_{\theta}(\xi_0) \delta \xi \dot{\delta} \xi$ Assuming $\theta(0) = 0$, one deduces $\theta(t) = O(\epsilon^2)$

And finally

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} V_x(\xi_0) + \nabla_{\xi} V_x(\xi_0) \delta\xi \\ V_y(\xi_0) + \nabla_{\xi} V_y(\xi_0) \delta\xi \end{pmatrix} \dot{\delta\xi} + O(\epsilon^3)$$

Integrating over a period gives

$$\begin{cases} \Delta x = \int_{0}^{2\pi} (\nabla_{\xi} V_x)_{\text{skew}}(\xi_0) \delta \xi \cdot \dot{\delta \xi} \, dt + O(\epsilon^3) \\ \Delta y = \int_{0}^{2\pi} (\nabla_{\xi} V_y)_{\text{skew}}(\xi_0) \delta \xi \cdot \dot{\delta \xi} \, dt + O(\epsilon^3) \\ \Delta \theta = \int_{0}^{2\pi} (\nabla_{\xi} V_{\theta})_{\text{skew}}(\xi_0) \delta \xi \cdot \dot{\delta \xi} \, dt + O(\epsilon^3) \end{cases}$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Symmetry arguments show that $\exists \alpha, \gamma$ s.t.

$$(\nabla_{\xi} V_x)_{\mathsf{skew}}(\xi_0) = \begin{pmatrix} 0 & \alpha & \alpha \\ -\alpha & 0 & 0 \\ -\alpha & 0 & 0 \end{pmatrix}, \quad (\nabla_{\xi} V_y)_{\mathsf{skew}}(\xi_0) = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & \alpha & -\alpha \\ -\alpha & 0 & -2\alpha \\ \alpha & 2\alpha & 0 \end{pmatrix},$$

$$(\nabla_{\xi} V_{\theta})_{\mathsf{skew}}(\xi_0) = \begin{pmatrix} 0 & \gamma & -\gamma \\ -\gamma & 0 & \gamma \\ \gamma & -\gamma & 0 \end{pmatrix}$$

In other words

$$\begin{cases} \Delta x = \tau_x \cdot \int_0^{2\pi} \delta \xi \wedge \dot{\delta \xi} \, dt + O(\epsilon^3) \\ \Delta y = \tau_y \cdot \int_0^{2\pi} \delta \xi \wedge \dot{\delta \xi} \, dt + O(\epsilon^3) \\ \Delta \theta = \tau_\theta \cdot \int_0^{2\pi} \delta \xi \wedge \dot{\delta \xi} \, dt + O(\epsilon^3) \end{cases}$$

where $\tau_x = \alpha \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \tau_y = \frac{\alpha}{\sqrt{3}} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ and $\tau_\theta = \gamma \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Symmetry arguments show that $\exists \alpha, \gamma$ s.t.

$$(\nabla_{\xi} V_x)_{\mathsf{skew}}(\xi_0) = \begin{pmatrix} 0 & \alpha & \alpha \\ -\alpha & 0 & 0 \\ -\alpha & 0 & 0 \end{pmatrix}, \quad (\nabla_{\xi} V_y)_{\mathsf{skew}}(\xi_0) = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & \alpha & -\alpha \\ -\alpha & 0 & -2\alpha \\ \alpha & 2\alpha & 0 \end{pmatrix},$$

$$(\nabla_{\xi} V_{\theta})_{\mathsf{skew}}(\xi_0) = \begin{pmatrix} 0 & \gamma & -\gamma \\ -\gamma & 0 & \gamma \\ \gamma & -\gamma & 0 \end{pmatrix}$$

In other words

$$\begin{cases} \Delta x = \tau_x \cdot \int_0^{2\pi} \delta \xi \wedge \dot{\delta \xi} \, dt + O(\epsilon^3) \\ \Delta y = \tau_y \cdot \int_0^{2\pi} \delta \xi \wedge \dot{\delta \xi} \, dt + O(\epsilon^3) \\ \Delta \theta = \tau_\theta \cdot \int_0^{2\pi} \delta \xi \wedge \dot{\delta \xi} \, dt + O(\epsilon^3) \end{cases}$$

where $\tau_x = \alpha \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \tau_y = \frac{\alpha}{\sqrt{3}} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ and $\tau_\theta = \gamma \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Symmetry arguments show that $\exists \alpha, \gamma$ s.t.

$$(\nabla_{\xi} V_x)_{\text{skew}}(\xi_0) = \begin{pmatrix} 0 & \alpha & \alpha \\ -\alpha & 0 & 0 \\ -\alpha & 0 & 0 \end{pmatrix}, \quad (\nabla_{\xi} V_y)_{\text{skew}}(\xi_0) = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & \alpha & -\alpha \\ -\alpha & 0 & -2\alpha \\ \alpha & 2\alpha & 0 \end{pmatrix},$$

$$(
abla_{\xi}V_{ heta})_{\mathsf{skew}}(\xi_{0}) = \left(egin{array}{ccc} 0 & \gamma & -\gamma \ -\gamma & 0 & \gamma \ \gamma & -\gamma & 0 \end{array}
ight)$$

In other words

$$\begin{cases} \Delta x = \tau_x \cdot \int_0^{2\pi} \delta \xi \wedge \dot{\delta \xi} \, dt + O(\epsilon^3) = \text{Flux of } \tau_x \text{ through the loop} \\ \Delta y = \tau_y \cdot \int_0^{2\pi} \delta \xi \wedge \dot{\delta \xi} \, dt + O(\epsilon^3) = \text{Flux of } \tau_y \text{ through the loop} \\ \Delta \theta = \tau_\theta \cdot \int_0^{2\pi} \delta \xi \wedge \dot{\delta \xi} \, dt + O(\epsilon^3) = \text{Flux of } \tau_\theta \text{ through the loop} \end{cases}$$

where
$$\tau_x = \alpha \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
, $\tau_y = \frac{\alpha}{\sqrt{3}} \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}$ and $\tau_\theta = \gamma \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

▲□▶▲□▶▲□▶▲□▶ = のへで

Optimal Plane Swimmer (small strokes) (DiFratta, A.)

Similarly, symmetry reasons show that

$$G(\xi_0) = \begin{pmatrix} \kappa & \rho & \rho \\ \rho & \kappa & \rho \\ \rho & \rho & \kappa \end{pmatrix}$$

- In the regime of small strokes near the shape (ξ₀, ξ₀, ξ₀), an optimal stroke is a planar ellipse *ε* (in the 3d shape space).
- The respective displacements in x, y, θ of the swimmer after one stroke are obtained by computing the flux through ε of the vectors

$$au_{X} = lpha(0, -1, 1), \ au_{Y} = rac{lpha}{\sqrt{3}}(-2, 1, 1), \ au_{ heta} = \gamma(1, 1, 1)$$

Complete characterization of the optimal (small) stroke that provides a prescribed displacement.

Optimal strokes

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで
Optimal Plane Swimmer (small strokes)

200

The 4 sphere swimmer

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

More involved:

- 4 controls
- 6 dimensions to control (3 translations, 3 rotations)

The 4 sphere swimmer

◆ロト ◆聞 ト ◆ 臣 ト ◆ 臣 ト ○臣 - のへで

Same strategy...

where $\tau_x, \tau_y, \tau_z, \tau_1, \tau_2, \tau_3$ are now... bivectors (explicit though)

2 optimal trajectories

Pure rotation along *z*

Translation along z and rotation along z

▲ロト ▲御 ト ▲ 恵 ト ▲ 恵 ト ● ④ ● ● ●

What changes?

- Complete characterization
- Optimal (small) strokes are described by

 $\xi(t) = \cos(t)u_1 + \sin(t)v_1 + \cos(2t)u_2 + \sin(2t)v_2$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Depending on the objective Δp one may have:
 - planar strokes ($u_2 = v_2 = 0$)
 - non planar strokes (general case)
 - infinitely many optimal strokes

Conclusion

Complete understanding of optimal swimming (by shape deformation) for simple mechanisms

▲ロト ▲ 理 ト ▲ 王 ト ▲ 国 ト ● ● ● ● ●

- $\bullet~$ Loop in a suitable space of deformations \Rightarrow moves the system following a Lie bracket
- Optimal gaits are optimal loops
- In the regime of small deformations, it is possible to characterize them