

Robot Control for Magnetic Microswimmers

Nicolas Andreff Institut FEMTO-ST Univ. Bourgogne Franche-Comté / CNRS Besançon, France

Acknowledgement: This talk is extracted from the PhD theses from Baptiste Véron (UFC 2014), Tiantian Xu (UPMC 2014), Ali Oulmas (UPMC 2018) and Maxime Etiévant (UBFC 2021)

Summer School on Complex Systems 2021(FOX 2021) Fréjus, Oct. 28, 2021

utbm

What is a robot ?

- In fact, the term "robot" means different things to different people.
- Even roboticists themselves have different notions about what is or isn't a robot.
- And for most of us, science fiction has strongly influenced what we expect a robot to look like and be able to do.
- So what makes a robot? Here's a definition that is neither too general nor too specific:
- A robot is an autonomous machine capable of sensing its environment, carrying out computations to make decisions, and performing actions in the real world.
- https://robots.ieee.org/learn/what-is-a-robot/
 Beware of fuzzy and/or human-related vocabulary (cf. magic AI)!
- A robot is an autonomous machine capable of sensing its environment, carrying out programmed computations, and performing motion in the real world to achieve human-specified objectives.

What is a robot ?

The perception/action cycle

with a human-biased description of the robot structure

What is a robot ?

The perception/action cycle seen from the robot control standpoint

Is a magnetic microswimmer a robot ?

[Medina-Sanchez14]

Is a magnetic microswimmer a robot ?

No, but a magnetic manipulation system is !

A short tour of magnetic manipulation systems

[Pittiglio19]

[Amokrane18]

[Li18]

[Zarrouk19]

[Siemens/Olympus 12]

[Son19]

[Folio17]

[Liao16]

[Armacost071

A short tour of magnetic manipulation systems

[Pittiglio19]

[Amokrane18]

[Li18]

[Liao16]

[Zarrouk19]

[Siemens/Olympus 12]

[Choi10]

[Son19]

[Folio17]

[Armacost07]

[Stereotaxis 10]

[Kummer 10]

[Ciutti 10]

Various kinds of magnetic manipulation systems

- Mobile permanent magnets
- Static electromagnets
- Mobile electromagnets [Véron 12]

Various kinds of magnetic manipulation systems

- **Mobile permanent magnets**
- **Static electromagnets**
- Mobile electromagnets [Véron 12]

[Yu 10]

[Véron 12]

TECHNOLOGIES

[Yesin 06]

N. Andreff, FOX 2021, Oct. 18, 2021

[Lucarini 15]

Objectif 35mm

Indoccono P

[Etiévant 21]

Pros and cons

Property	Static	Mobile permanent	Mobile
	electromagnets	magnets	electromagnets
Dexterity	\oplus complete	\ominus partial	\oplus complete
Source/object distance	\ominus long	\oplus short	\oplus short
Joule effect	\ominus strong	⊕ inert	\rightsquigarrow reduced
Turn off the field	\oplus possible	\ominus impossible	\oplus possible
Stabilization	\oplus possible	\ominus unstable/difficult	\oplus possible
Control mode	\oplus simple	\oplus simple	🕀 redundant
Patient acceptance	\ominus weak	\ominus dangerous	→ improved

Control issues

Robot structure

- Robot model
- Kinematic analysis
- Desired motion
- Control scheme

Magnetic efforts on a magnetic object

Several actuation modes

- Force and Torque (F/T)
 - Dynamic equations
- Force and Field (F/B)
 - Higher dynamics in rotation then in translation : M (almost) always aligned with B, thus T=0
- Field only (B)
 - Uniform field \rightarrow F = 0
 - Uniform field easy to produce : Helmholtz configuration
 - Force scales down poorly
- Force only (F)
 - Less frequent because $B \neq 0$
 - Bead pulling

Control issues

- Robot structure
- Robot model
- Kinematic analysis
- Desired motion
- Control scheme

Magnetic field model

- Requirements
 - Fast \rightarrow closed-loop control, real-time constraint
 - Accurate ... but sensor-based control, so not *that* accurate

Magnetic field models

Specific configurations

- Helmholtz pair : B = cst at center (\rightarrow B \approx cst everywhere)
- Maxwell pair : B = 0 at center ($\rightarrow F \approx cst$ everywhere)
- General case
 - $\boldsymbol{B}(\boldsymbol{P}) = \boldsymbol{b}(\boldsymbol{P}) \boldsymbol{.} \boldsymbol{I}$
 - Fast decay of B as P goes away
 - Non linear close to the source, smooth (linear) far away
 - Complex

Champ magnétique produit par une bobine

Magnetic field models

- Finite Element Model
 - Accurate but sparse
 - Costly but pre-computed
 - Interpolation between samples but memory access cost
- Mapping
 - Same as above
 - Fits for any shape
- Dipole model
 - Circular loop
 - r>>a
 - Simple closed-form expression

Relative error on field norm wrt. FEM Angular error wrt. FEM

Models based on magnetic potential vector

Circular loop

$$\mathbf{b} = \nabla \wedge \mathbf{a}$$
 with $\mathbf{a} = (A_r, A_\theta, A_\phi)^T$ [Jackson99]

$$\begin{cases}
A_r = 0 \\
A_\theta = 0
\end{cases}$$
Elliptic integral functions
$$K(k) = \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{(1 - k^2 \sin^2 \alpha)}} d\alpha$$

$$K(k) = \int_0^{\frac{\pi}{2}} \frac{1}{\sqrt{(1 - k^2 \sin^2 \alpha)}} d\alpha$$

$$K(r, \theta) = \sqrt{\frac{4ar \sin \theta}{a^2 + 2ar \sin \theta + r^2}}$$

- Almost as accurate as FEM
- Higher CPU cost : derivatives of K & E
- Not defined for r = 0 or $\theta = 0$

N. Andreff, FOX 2021, Oct. 18, 2021

 $d\alpha$

 $\sqrt{\left(1-k^2\sin^2\alpha\right)}^{\alpha}$

 $\sqrt{(1-k^2\sin^2\alpha)}d\alpha$

Control-oriented magnetic field model

- Model based on the magnetic potential vector
- Use of an "old" formula

$$\frac{\mathrm{d}K}{\mathrm{d}k}(k) = \frac{E(k)}{k(1-k^2)} - \frac{K(k)}{k}$$
$$\frac{\mathrm{d}E}{\mathrm{d}k}(k) = \frac{E(k)}{k} - \frac{K(k)}{k}$$
[Abramowitz72]

Pour tout $(r, \theta) \in D_{k^*}$ on a :

$$\begin{cases} b_r(r,\theta) = \frac{\mu_0 I}{\pi} \frac{a^2}{\sqrt{a^2 + 2ar\sin\theta + r^2}} \frac{E(k)\cos\theta}{a^2 - 2ar\sin\theta + r^2} \\ b_\theta(r,\theta) = \frac{\mu_0 I}{\pi} \frac{1}{\sqrt{a^2 + 2ar\sin\theta + r^2}} \left[\frac{E(k)(r^2 + a^2\cos(2\theta))}{(a^2 - 2ar\sin\theta + r^2)2\sin\theta} \right] \\ b_\phi = 0 \end{cases}$$

[Etiévant 19]

• Smooth extension on the axis

	Computation time	Standard deviation	Memory used
	(ms/point)	(ms)	(ko)
Mapping	162	1.583	≥1400
Dipole	1.7	0.163	≤ 6
Wong's formulation	1164.5	7.1	≤ 7
Schill's formulation	241.4	2.5	≤ 7
Extended formulation	3.6	0.147	≤7

A generic model for multi-mobile source systems

Static electromagnets

Specific case

A generic model for multi-mobile source systems

- Superposition theorem
- Linear in the currents
- Non-linear in the source locations
- In robotic language: Forward Electromagnetic Model (FEmM)

$$\begin{bmatrix} \boldsymbol{f} \\ \boldsymbol{b} \end{bmatrix} = FEmM(\{{}^{0}T_{i}\}_{i=1..n}, \boldsymbol{I})$$

$$\mathbf{f}\left(\{{}^{j}\mathbf{T}_{0} \}_{j}, {}^{0}\tilde{\mathbf{p}}, \mathbf{m}\right) = \sum_{j=1}^{n} {}^{0}\mathbf{R}_{j}{}^{j}\mathbf{f}_{j}({}^{j}\mathbf{T}_{0} {}^{0}\tilde{\mathbf{p}}, \mathbf{m})i_{j}$$
$$= \mathbf{F}\left(\{{}^{j}\mathbf{T}_{0} \}_{j}, {}^{0}\tilde{\mathbf{p}}, \mathbf{m}\right)\mathbf{i}$$
[Véron 14]

Control issues

- Robot structure
- Robot model
- Kinematic analysis
- Desired motion
- Control scheme

Dynamic control

Computed-torque control

Computed Twist-and-Current Control

DIEmM = Differential Inverse Electromagnetic Model

Non-linear control by linearisation

• Forward Electromagnetic Model (FEmM)

$$\begin{bmatrix} f \\ t \end{bmatrix} = \mathbf{F}_{EmM} \left(\begin{bmatrix} 0 \\ T_j \end{bmatrix}_{j=1..n}, \mathbf{I} \right)$$

non linear

• Inverse Electromagnetic Model (IEmM)

$$\langle \{ {}^{0}T_{j} \}_{j=1..n}, I \rangle = FEmM^{-1}(f, t)$$

- solution to a non linear equation ! → Linearisation
- Differential Forward Electromagnetic Model (DFEmM) / DIEmM

$$\begin{bmatrix} d\mathbf{f} \\ d\mathbf{t} \end{bmatrix} = \mathbf{J}_{Em} \left(\{ {}^{0}T_{j} \}_{j=1..n}, \mathbf{I} \right) * \begin{bmatrix} d\mathbf{I} \\ \mathbf{\Gamma} \end{bmatrix} \qquad \begin{bmatrix} d\mathbf{I} \\ \mathbf{\Gamma} \end{bmatrix} = \mathbf{J}_{Em}^{inv} (\mathbf{f}, \mathbf{t}) * \begin{bmatrix} d\mathbf{f} \\ d\mathbf{t} \end{bmatrix}$$

Proportional linearised controller

$$\begin{bmatrix} d \mathbf{I} \\ \mathbf{\Gamma} \end{bmatrix} = k_p * \mathbf{J}_{Em}^{inv} \left(\mathbf{FEmM} \left(\{ \mathbf{T}_j \}_{j=1..n,k-1}, \mathbf{I}_{k-1} \right) \right) * \begin{bmatrix} \mathbf{f}^* - \mathbf{f}_{k-1} \\ \mathbf{t}^* - \mathbf{t}_{k-1} \end{bmatrix}$$

Experimental validation

Control issues

- Robot structure
- Robot model
- Kinematic analysis
- Desired motion
- Control scheme

« Kinematic » analysis

• Singularities

$$\begin{bmatrix} d \mathbf{f} \\ d \mathbf{t} \end{bmatrix} = \mathbf{J}_{Em}(\cdots) * \begin{bmatrix} d \mathbf{I} \\ \mathbf{\Gamma} \end{bmatrix} , \quad \begin{bmatrix} d \mathbf{I} \\ \mathbf{\Gamma} \end{bmatrix} = \mathbf{J}_{Em}^{inv}(\cdots) * \begin{bmatrix} d \mathbf{f} \\ d \mathbf{t} \end{bmatrix}$$

rank $(\mathbf{J}_{Em}) dim(\mathbf{J}_{Em}) = 6 \times 7 n \Rightarrow rank(\mathbf{J}_{Em}) \le 5$

if (rank < 5) J_{Em} is singular => serial singularity : can not update the full wrench

• Null space

 $dim(\mathbf{J}_{Em}) = 6 \times 7n \Rightarrow rank(\mathbf{J}_{Em}) < 5 \Rightarrow dim ker(\mathbf{J}_{Em}) \ge 7n - 5$ Many infinitely many ways to change the configuration of the magnetic manipulator for the control of 1 magnetic object/tool

- \rightarrow Manipulate several objects : max 5 dof/object, thus up to 7n/5 objects !
- \rightarrow Use this redundancy to optimise additional cost functions

e.g. manipulability, collisions, energetic cost, ...

« Kinematic » analysis

• Manipulability

 $\begin{bmatrix} d \mathbf{f} \\ d \mathbf{t} \end{bmatrix} = \mathbf{J}_{Em}(\cdots) * \begin{bmatrix} d \mathbf{I} \\ \Gamma \end{bmatrix}$ How "good" is J_{Em} at updating the wrench?

Numerical index : condition number $\kappa = \frac{\sigma_1}{\sigma_6}$ First manipulability index : $\mu = \frac{1}{\kappa}$ Many other manipulability indices

• From PKM wrench feasible workspace...

WFW = {
$$\mathbf{F} \in \mathbb{R}^6 \mid \mathbf{F} = \mathbf{J}^{-T} \mathbf{T}, \ 0 \leq \mathbf{T} \leq \tau_{max}$$
 }

... to the achievable field workspace

$$E_{B}(\{{}^{0}T_{j}\}_{j=1..n}, P) = \left\{ B(\{{}^{0}T_{j}\}_{j=1..n}, P), B(\cdots) = \sum_{j=1}^{n} b_{j}(\cdots) I_{j}, |I_{j}| \leq I_{max} \right\}$$

N. Andreff, FOX 2021, Oct. 18, 2021

Tension

« Kinematic » analysis

• From the achievable field workspace

$$E_{B}(\{{}^{0}T_{j}\}_{j=1..n}, P) = \left\{ \boldsymbol{B}(\{{}^{0}T_{j}\}_{j=1..n}, P), \quad \boldsymbol{B}(\cdots) = \sum_{j=1}^{n} \boldsymbol{b}_{j}(\cdots) I_{j}, |I_{j}| \leq I_{max} \right\}$$

... to a magnetic manipulability index

$$\mu(P) = \max_{\vec{e}} \left\{ \boldsymbol{B} \left\{ \left\{ {}^{0}\boldsymbol{T}_{j} \right\}_{j=1..n}, P \right\} \cdot \vec{e}, \quad \boldsymbol{B}(\cdots) \in \boldsymbol{E}_{B}, |\vec{e}| = 1 \right\}$$

Dexterity map

Control issues

- Robot structure
- Robot model
- Kinematic analysis
- Desired motion
- Control scheme

Keep control at any time !

User needs and robotics practice

- User ≠ robotics expert
- User needs and Task design
 - Ergonomic
 - Simple
 - Accurate
- Trajectory definition
 - Discrete set of waypoints
 - $S = \{P_i, i=1..n\}$
 - Path = continuous curve
 - $C = \{P(s), s \in [0,1]\}$ Trajectory = timed waypoints

$$\boldsymbol{T} = \{\boldsymbol{P}(t), t \in [t_0, t_{inf}]\}$$

Control issues

- Robot structure
- Robot model
- Kinematic analysis
- Desired motion
- Control scheme

Standard controller at small scale

MagPier experience :

Small robot in the air over a surface = dry friction

ICRA/NIST Challenge 2011 : MagPier @ ISIR/FEMTO-ST

N. Andreff, FOX 2021, Oct. 18, 2021

TECHNOLOGIES

Golden Eye reloaded

Viscous/dry friction \rightarrow time delay $\rightarrow P_2$ was missed \rightarrow now aiming at P_3

A controller respecting the geometry Non-linear P(s)Geometry V_{ref} Robot X controller $\mathsf{U}_{\mathsf{aux}}$ u e(s) ≡ P] Defined dx/dt dx/ds independently by the user Sensor P(t) arbitrary v_{ref} $\mathsf{P}_{_2}$ Ρ Time-independent error 1 P(s) Arbitrary velocity e(s) S $\mathsf{P}_{_0}$ P(t) \Rightarrow Time and space are decoupled \Rightarrow User need satisfied \Rightarrow but NL controller to be defined

Non holonomic vehicle control

Vehicle state : s, d, θ_{e}

Vehicle control inputs : $u_1 = ||v|| \quad u_2 = \omega$

Vehicle kinematics :

$$\dot{s} = \frac{u_1}{1 - dC(s)} \cos \theta_e$$
$$\dot{d} = u_1 \sin \theta_e$$
$$\dot{\theta}_e = u_2 - \dot{s}C(s)$$

Non-linear Time-dependent Non-holonomic

Exact linearisation and cascade control

Scaled-up helical swimmer in 2D

to-5

TECHNOLOGIES

Helical swimming is non holonomic

open-loop control of the height + closed-loop control in the horizontal plane

[Xu 14]

Extension to magnetic swimming in 3D

From a 3-state (s,d, θ) 2-input ($|v|,\omega$) chained system to a 5-state (s,dx,dy, θ_x , θ_y) 3-input ($|v|,\omega_x,\omega_y$) chained system

+ independence from propulsion mode

N. Andreff, FOX 2021, Oct. 18, 2021

[Oulmas 18]

Take home messages

- A microswimmer is not a robot
- A new class of magnetic manipulation systems
 multi-mobile electromagnet systems
- Several modes of actuation

Field only, Force/Field, (Force only)

Two control strategy

trajectory tracking, path following

A control-oriented magnetic model

fast and accurate enough

• Typical robotic issues

Manipulability, dexterity, singularities

