Spatiotemporal organization of a living nematic by confinement and surface anchoring

Igor Aronson Pennsylvania State University

Penn State University

- State College: equally close to New York, Washington DC, Phladelphia, and Pittsburg (3 hours by car)
- twenty-four campuses (main campus 45,000 students)
- 17,000 faculty and staff
- >100,000 students
- second largest football stadium in the US (112,000 seats)
- operating budget >7 billion dollars

Active Matter

- <u>Active Matter</u> a wide class of systems actively consuming energy from environment, such as assemblages of active self-propelled particles. The particles have a propensity to convert energy stored in the medium to motion
- <u>Examples</u>: suspensions of swimming bacteria and synthetic microswimmers, cytoskeletal actin-myosin networks, driven colloids
- <u>Active materials</u> exhibit properties not available at equilibrium: self-healing, adaptation, shape change

Suspension of microswimmers: one of the simplest realizations of active matter

Bacillus subtilis

R Goldstein,Cambridge, UK M Graham, U Wisc E Clement, ESPCI, France H-P Zhang, Shanghai JT Univ M Shelley, Courant D Saintillan, UIUC/UCSD Holger Stark, TU Berlin Hartmut Lōven, U Dusseldorf T Ishikawa, Tohuku U A Beer, Ber Sheva , Israel

-about 5 µm long, 0.7 µm diameter

- swim up to 20 $\mu\text{m/s}$
- low tumbling rate
- aerobic (need oxygen to swim)

Ryu, Turner, Berg, Harvard Univ

A living nematic

Zhou, Sokolov, Lavrentovich, IA PNAS 2014 ¹⁴³

Liquid crystals

Orientational and positional order

Orientational order

No order

liquid crystal phases

orientational order: nematic

layering: smectic

(b)

chiral order: cholesteric

(c)

(a) **n** nematic director: (apolar) vector along molecular axis

nematic liquid crystals (DSCG) 3 elastic constants $K_{1,2,3}$ (splay, bend >> twist) 3 viscosities: $\eta_{a,c} \sim 10^4 \eta_b$

LC: DSCG

0.3

0.4

0.5

c_{DSCG} (mol/kg)

DSCG, a.k.a. cromolyn, anti-asthma drug (b) disc-like molecules from linear aggregates

- I isotropic
- N nematic
- C columnar

147

0.6

0.7

0.8

Mucus – biological liquid crystal

- protective, exchange, and transport medium in the digestive, respiratory and reproduction systems
- Protects against infectious agents such as fungi, bacteria, and viruses
- Better understanding of bacteria-mucus interaction is crucial for the study and development of better treatment of many diseases
- Long molecules form liquid crystalline phase of mucus

N Figueroa Morales, et al, Sci Rep, 2019

Mark I Experimental Cell

glass plates

h

- nematic LC
- planar director surface anchoring_v (x-direction)
- plates coated with polyimide
- rubbed with a velvet cloth
- thickness : 5 500 microns
- concentration of bacteria: 0.2 3%
- temperature 25-35 C

Bacteria follow director of a LC (low concnetration)

director (non-polar vector) - average molecular orientation

156

Zhou, Sokolov, Lavrentovich, IA, PNAS 2014

Zoom on individual bacterium

direct optical visualization of the 24 nm flagella!

- flagella rotation 10 Hz
- body counter-rotation 2 HZ

Tracer-bacterium interaction: targeted cargo transport and delivery

Evidence for the long-range interaction

Sokolov, Zhou, Lavrentovich, IA PRE 2015

Direct flow visualization flow → butterfly pattern

Crossed-polarized image

Polscope image

polscope directly visualizes optical retardance

Reconstructed flow field

Average flow field created by a single freely swimming bacterium far from surfaces (A–D) and close to a wall (E–H).

Induced flow comparable to the swimming speed at a distance approx 0.5 microns

Drescher K et al. PNAS 2011;108:10940-10945

Guidance of bacteria in a biphasic domain

higher temperature – nematic/isotropic phases co-exist bacteria follow the boundaries of normal tactoids

Living LC in the biphasic domain

higher temperature – nematic/isotropic phases co-exist

bacteria melt LC and nucleate tactoids - cloud chamber

Higher Concentrations: Collective Effects

no oxygen: equilibrium state of uniform director

with oxygen: director undulations and stripes

Collective Effects: Formation of Stripe Pattern

scale depends on concentration, amount of oxygen extreme sensitivity-> possible biosensor applications

Bacterial Turbulence in LC

Bacteria in LC

MT+ MM, Dogic group, Nature 2013

Active 2D nematic Low curvature interface 60X mag 15µm bar

Emergence of the coherence length (period of the stripe pattern)

coherence length vs concentration

Estimation of the coherence length

• total dipole moment of the suspension cU_0

 $U_0 = Fl$

Balance of viscous and elastic (LC) torques

$$\left. \begin{array}{c} \Gamma_{shear} \sim \alpha c U_0 \theta \\ \Gamma_{elastic} \sim K \frac{\partial^2 \theta}{\partial x^2} \end{array} \right\} \Longrightarrow \xi = \sqrt{\frac{K}{\alpha c U_0}}$$

Correction due to the finite cell thickness (mass conservation)

$$\xi = \sqrt{\frac{Kh}{\alpha_0 l c U_0}}; \quad \alpha \to \alpha_0 l / h$$

179

i

Comparison with the Experiment

Computational model

- Edwards-Beris model for liquid crystals (tensorial order par)
- thin layer approximation (2D description)
- almost no interaction between the bacteria
- bacteria impose stress on the fluid
- bacteria swim along the LC director

Ginzburg-Landau-de Gennes Eq for Tensor order par Q

Edwards-Beris Model for liquid crystals

Eq for hydrodynamic velocity v (aka Stokes Eq) Bacteria -> active stress

Conservation law for bacteria conc c

Genkin Sokolov, Lavrentovich, IA, PRX 2017

Edwards-Beris Model (LC) $(\partial_t + \mathbf{v}\nabla)\mathbf{Q} - \mathbf{S} - \Gamma \mathbf{H} + \mathbf{F}_{exter} = 0$

2D order parameter (OP) Traceless anti-symmetric tensor

$$\mathbf{Q} = \left(\begin{array}{cc} Q_{xx} & Q_{xy} \\ Q_{xy} & -Q_{xx} \end{array}\right)$$

v – fluid flow

188

- H molecular field, S-tensor
- F_{exter} external aligning field (anchoring)
- Γ rate constant

Edwards-Beris Model

 ${\bf S}$ couples ${\bf Q}$ to the velocity gradient tensor ${\bf W}$

Molecular field
$$\mathbf{H} = -\frac{\delta F}{\delta \mathbf{Q}} - \frac{\mathbf{I}}{2} \mathrm{Tr} \frac{\delta F}{\delta \mathbf{Q}}$$

Ginzburg-Landau-de Gennes free energy (single constant approximation for elastic energy)

$$F = \int d\mathbf{r} \left(\frac{a}{2} Q_{\alpha\beta} Q_{\alpha\beta} - \frac{b}{3} Q_{\alpha\beta} Q_{\beta\gamma} Q_{\gamma\alpha} + \frac{c}{4} \left(Q_{\alpha\beta} Q_{\beta\alpha} \right)^2 + \frac{L_1}{2} \left(\partial_{\gamma} Q_{\alpha\beta} \right)^2 + \dots \right)^2$$

Linear momentum equation (coupled to order par equation, generalization of Stokes eq)

v – hydrodynamic velocity
stress tensors σ are functions of Q,v
ξ - friction coefficient

Bacteria impose active stress σ_{act} , drive the system out of equilibrium

Active stress due to bacteria swimming

 $\mathbf{p} = (\cos(\phi), \sin(\phi))$

$$\sigma_{\rm act} = \lambda c \left(\mathbf{p}\mathbf{p} - \frac{\mathbf{I}}{2} \right)$$

$$\partial_t \phi = \frac{q}{\tau_0} \sin(2\theta - 2\phi) + \dots$$

 $\tau_0 <<1 - fast relaxation towards nematic direction <math>\phi = \theta, \theta + \pi -> p=n, p=-n$

Conservation law: transport of bacteria

- bacteria swim parallel/antiparallel to the director: $\phi = \theta, \phi = \theta + \pi$ or **p=n**, **p=-n**
- bacteria randomly reverse direction with the rate $1/\tau$
- c_+ parallel to **n**, c_- antiparallel: $-\pi/2 < \theta < \pi/2$

The mechanism of reversal: two flagella bundles

Nuris Figueroa, PSU

Relation to Active Nematic Model

- Amin Doostmohammadi, Julia Yeomans, others
- Equation for the OP

$$(\partial_t + \mathbf{v}\nabla)\mathbf{Q} - \mathbf{S} - \Gamma\mathbf{H} + \mathbf{F}_{\text{exter}} = 0$$

• Linear momentum

$$\nabla \left(\sigma_{\rm a} + \sigma_{\rm s} + \sigma_{\rm act} + \sigma_{\rm visc} - p\mathbf{I} \right) - \xi \mathbf{v} = 0$$

• Constant density. These eqs can be obtained in the limit of very small reversal time (unphysical limit)

Analytical linear stability of the aligned state in bacteria-nematic system

homogenous steady state: $\mathbf{n} = (1, 0), c_+ = c_- = c_0/2$ perturbations ~ exp($\sigma(\mathbf{k})t + i \mathbf{kr}$)

long-wave instability:

zero anchoring

short-wave instability: nonzero anchoring

$$k_{\rm cr} \sim ({\rm Er} \ \xi_{\rm an})^{1/4}$$

Comparison with the Experiment

Computational Analysis: tensorial eqs coupled to conser law

- Semi-implicit quasi-spectral method (FFT)
- Massive parallel, implemented on the GPU
- # of mesh points 1024², results checked for 2048²
- Nvidia CUDA programming language
- Visualization Matlab
- Custom-made defect tracking algorithm

Fundamental problem of algorithm

- Mapping a vector field (flux of bacteria) to a nematic field is ambiguous
- Nematic director $n = (\cos(\theta), \sin(\theta))$, nematic angle $-\pi/2 < \theta < \pi/2$
- Bacterial fluxes $J_{\pm} = \pm V_0 n$ are discontinuous for θ changing from $-\pi/2$ to $\pi/2$: no standard numerical approach works

resolving angle ambiguity

- nematic angle is defined between $-\pi/2 < \theta < \pi/2$
- directions $-\pi/2$ and $\pi/2$ are identical for the nematic but the flux $V_0 \sin(\theta)$ changes sign: $\partial_t c \pm V_0 \nabla \mathbf{n} c + \dots$
- unphysical discontinuities for c₊ along these lines

Solution of PDEs - Phase diagram

- narrow band of periodic states
- hysteretic transition

instability, near threshold

Anchoring, periodic modulations

Strong anchoring, bound pairs

Topological defects in a nematic

Stable half-integer defects (disclinations)

Topological charge
$$k=rac{1}{2\pi}\oint_{\gamma}
abla heta\cdot d\mathbf{l}$$

 θ orientation of director, γ contour

Integer defect (unstable) k=1

k = 1/2

passive versus active nematic

passive nematic: isolated topological defects are immobile

<u>active nematic</u>: $-\frac{1}{2}$ defect is immobile (symmetry), but $\frac{1}{2}$ defect moves spontaneously

1/2 defect: migration

-1/2 defect: stationary

Defect's statistics

- +1/2 defects persistently moving, -1/2 defects are immobile
- Gaussian velocity distributions for high concentrations
- Stretched exponential for low concentrations (1<ξ<2)

Accumulation/depletion

large reversal time

1/2 defect accumulation

-1/2 defect depletion

Topological defects in epithelia govern cell death and extrusion

Thuan Beng Saw^{1,2}*, Amin Doostmohammadi³*, Vincent Nier⁴, Leyla Kocgozlu¹, Sumesh Thampi^{3,5}, Yusuke Toyama^{1,6,7}, Philippe Marcq⁴, Chwee Teck Lim^{1,2}, Julia M. Yeomans³ & Benoit Ladoux^{1,8}

Simplified conservation law

$$c_{\pm}(x, y, t) \to c_{\pm}(x - Vt, y)$$

V - velocity of the defect **Discontinues flux of bacteria** V₀**n n**= ($\cos(\theta)$, $\sin(\theta)$), $\theta = \pm \phi/2$ topological $\pm \frac{1}{2}$ defect ϕ – polar angle

$$-V\partial_x c_+ + V_0 \nabla \mathbf{n} c_+ = -\frac{c_+ - c_-}{\tau} + D_c \nabla^2 c_+$$
$$-V\partial_x c_- - V_0 \nabla \mathbf{n} c_- = -\frac{c_- - c_+}{\tau} + D_c \nabla^2 c_-$$

Additional boundary condition along the branch cut $\theta = \pm \pi/2$ Regularization removes discontinuity

Analytical solution for τ ->0 (small reversal time) $c_{1/2} \approx c_0 + \frac{\tau V_0^2 c_0}{8D_c} \cos \varphi$ $c_{-1/2} \approx c_0 - \frac{\tau V_0^2 c_0}{24 D_c} \cos 3\varphi$

no accumulation /depletion

experiment

Tactoids and Turbulence

- Isotropic inclusions in nematic phase
- Shape, size, etc. is determined by interplay of tension on the I-N interface and elasticity of the nematic phase

Numerical implementation of tactoids

• Landau-de Gennes free energy:

$$\mathcal{F} = \int dr^3 \left(-\frac{a}{2} \boldsymbol{Q} : \boldsymbol{Q} + \frac{c}{4} (\boldsymbol{Q} : \boldsymbol{Q})^2 + \frac{K}{2} (\nabla \boldsymbol{Q} : \nabla \boldsymbol{Q}) \right)$$

• Equilibrium amplitude of the OP:

$$q = \begin{cases} \sqrt{\frac{a}{2c}}, & a > 0, c > 0\\ q = 0, & a < 0, c > 0 \end{cases}$$

- Set q = 0 in I phase, $q \neq 0$ in N phase
- Set normal to the surface parallel to the gradient of the OP
- Tactoids shape is dynamically adjusted
- Planar and homeotropic anchoring

Genkin, Sokolov, IA, NJP , 2018

Enforcing the alignment

- Typically, a planar alignment on the tactoid's surface
- Alignment enforced by the Rapini-Papoluar condition (equivalent to Robin b.c.)

$$\sigma = w(\theta_0 - \theta)^2$$

- θ_0 easy direction
- *w* strength of anchoring
- σ surface energy
- Here we introduce surface anchoring on the diffused interface via an external force $\mathsf{F}_{\mathsf{exter}}$

Numerical integration

Results

- Tactoids carry non-zero average topological charge
- Strong fluctuations
- Topological charge first increases, then decreases with the bacteria concentration
- Topological charge increases with tactoid's size

Different defect mobility→ charging

- Charging of tactoids due to different mobility of $\pm 1/2$ defects
- Topological defects with the same sign attract and with different repel
- +1/2 defects have higher mobility
- Potential barrier at the I-N interface
- P^+ , P^- concentrations of + and defects
- P^+ , P^- proportional to bact concertation c_0

$$\partial_t P^+ = D^+ \partial_{xx} P^+ - \partial_x \left(\left(-F'(x) + \mu \int_0^\infty \frac{P^+(x',t) - P^-(x',t)}{x - x'} dx' \right) P^+ \right) \\ \partial_t P^- = D^- \partial_{xx} P^- - \partial_x \left(\left(-F'(x) + \mu \int_0^\infty \frac{P^-(x',t) - P^+(x',t)}{x - x'} dx' \right) P^- \right)$$

Asymptotic solution

• Steady-state equation for *P*⁻:

$$D^{-}\partial_{xx}P^{-} - \partial_{x}\left(\left(-F'(x) + \mu \int_{0}^{\infty} \frac{P^{-}(x') - P_{0}}{x - x'} dx'\right)P^{-}\right)$$
$$= 0$$

• Solution for weak interaction: $\mu = \varepsilon \mu_1$, $P^- = P_0^- + \varepsilon P_1^- + \cdots$

$$s = P_0 \left(1 - e^{A/D^-} \right) \left(1 - \frac{\mu}{D^-} P_0 \log(L/L_1) e^{A/D^-} \right)$$

Describes both isotropic and nematic tactoids

Experimental Verification

- LC is quenched in the biphasic domain by rapid heating
- Bacteria orientation is extracted from the microscopy images
- 17 tactoids are processed

(a) (b)

Pinning of active topological defects

- Periodic array of artificial obstacles
- Only negative defects are pinned
- Positive defects freely move

Combing bacterial turbulence

- 3D printed pillar arrays with different spacing
- Two photon laser lithography system
 Nanoscribe, resolution 200 nm

Nishiguchi et al IA, Nature Comm 2018

Pillars in Liquid Crystals

Bacillus subtilis + DSCG

With vs Without Pillars

Average along Y

Concentration around pillars

Simulation results

Simulation results

Formation of Polar Bacterial Jets

Photo-patterned nematic: Arrays of C-stripes

Taras Turiv, Runa Koizumi, Kristian Thijssen, Mikhail M. Genkin, Hao Yu, Chenhui Peng, Qi-Huo Wei, Julia M. Yeomans, Igor S. Aranson, Amin Doostmohammadi, Oleg D. Lavrentovich[,] Nature Physics 2020

Director pattern

 $\hat{\mathbf{n}}_0 = |\cos(\pi y/L), -\sin(\pi y/L), 0|$

Pure splay deformations are located at

$$y = 0, \pm L, \pm 2L, \dots$$

Bend Deformations

$$y = \pm L / 2, \pm 3L / 2, ...$$

Raw images of bacteria

Undulations for higher concentration

Bacteria Condense in Polar Jets

Theoretical understanding: two bacterial populations

$$\partial_t c^{\pm} + \nabla \cdot \left(\pm v_0 \hat{\mathbf{n}} c^{\pm} + \mathbf{v}_f c^{\pm} \right) = \mp \frac{c^+ - c^-}{\tau} + D_c \nabla^2 c^{\pm}$$

- Infinite reversal time τ
- Neglect fluid flow
- Stationary solution
- Very dilute suspension no realigning effect

Suppression one of the population

- c⁺ population is exponentially amplified
- c⁻ population is exponentially suppressed
- However, the peaks are not sharp

Less dilute suspension: realignment of director by bacteria

$$\partial_t \hat{\mathbf{n}} = -\hat{\mathbf{n}} \times \hat{\mathbf{n}} \times (\alpha \hat{\mathbf{n}}_0 + \gamma \mathbf{F})$$

Landau-Lifshitz equation ensures $\hat{\mathbf{n}}^2 = 1$

Solution with sharp peaks

$$c^{+} = -\frac{W\left\{-\frac{\gamma v_{0}U_{0}}{aD_{c}}C^{+}\exp\left[\frac{v_{0}L}{\pi D_{c}}\cos(ky)\right]\cos(2ky)\right\}}{\frac{\gamma v_{0}U_{0}}{aD_{c}}\cos(2ky)}$$

W-Lambert W function

Results of comp modeling

Control of bacteria by spiral nematic vortices

Runa Koizumi, Taras Turiv, Mikhail M. Genkin, Robert J. Lastowski, Hao Yu, Irakli Chaganava, Qi-Huo Wei, Igor S. Aranson, Oleg D. Lavrentovich, PR Research 2020

Vortices and limit cycles

- Prepatterned director: spiral with different pitch
- Low concentration of bacteria scattering from the center of the spiral
- Higher concentration: limit cycles
- Most stable cycles for the tilt angle 45°

Stable cycles

Low concentration

High concentration $\phi=25^{\circ}$

ф=75°

ф=25°

Agent-based simulations

• Bacteria swim with the speed V along the director

$$\partial_t \theta = \gamma_{\rm B} \sin \left[2 \left(\phi_0 - \theta \right) \right]$$

• Bacteria realign the director

$$\partial_t \hat{\mathbf{n}} = -\hat{\mathbf{n}} \times \hat{\mathbf{n}} \times \left(\gamma_s \hat{\mathbf{n}}_0 - 2a\mathbf{F}_{act} + K\Delta \hat{\mathbf{n}}\right)$$

- Active Force $\mathbf{F}_{act} = \nabla \cdot \sum \boldsymbol{\sigma}_{act}$
- Active stress $\mathbf{\sigma}_{act} = -\lambda \mathbf{Q}_{B} f(\mathbf{r})$
- Nematic tensor $\mathbf{Q}_{\rm B} = \hat{\mathbf{p}}\hat{\mathbf{p}} \mathbf{I}/2$
- *K* elastic constant
- *f* shape of the bacterium

Function of the Number of Bacteria

Function of the Tilt Angle

References

- Zhou, Sokolov, Lavrentovich, IA Living Liquid Crystals PNAS 2014
- Genkin, Sokolov, Lavrentovich, IA PRX 2017
- Genkin, Sokolov, IA, NJP , 2018
- Taras Turiv, Runa Koizumi, Kristian Thijssen, Mikhail M. Genkin, Hao Yu, Chenhui Peng, Qi-Huo Wei, Julia M. Yeomans,

IA, Amin Doostmohammadi, Oleg D. Lavrentovich, Nature Physics 2020

 Runa Koizumi, Taras Turiv, Mikhail M. Genkin, Robert J. Lastowski, Hao Yu, Irakli Chaganava, Qi-Huo Wei, IA, Oleg D. Lavrentovich, PR Research 2020

Review paper to appear: Bacterial Active Matter, Reports on Progress in Physics, 2022

Summary:

- LLC exhibit coupling between activity and topology
- Computational model is in faithful agreement with experiment
- Experiments fully support our theoretical predictions
- Bacteria accumulate in the cores of ½ defects and expelled from the cores of -½ defects
- Asymmetric pinning
- Control of bacterial motion by surface patterning