Active Matter : from liquids to solids from Collective Motion to Collective Actuation

Olivier Dauchot

Collaborators: D. Bartolo
M. Schindler,
V. Demery,
G. Düring,
C. Coulais.

Students: J. Deseigne,
G. Briand,
P. Baconnier,

What is active matter?

The matter of which atoms are active units

- Each active unit follows dynamics with
- broken time reversal symmetry
- broken space isotropy

29/10/2021

Why is Active Matter interesting for physicists?

- The simplest out of equilibrium matter phases, with new physics

In active fluids

- mechanical pressure is not a state variable
- liquid-gas phase separation takes place in purely repulsive systems
- macroscopic flows emerge in the absence of external gradient : collective motion
- It offers a unique point of view on traditional matter

- In active solids
- spontaneous flows can take place in crystalline structure
- selective \& collective oscillations emerge in overdamped linear elastic systems

Active matter outside of the realm of the living world or robotics

The walking grains : from diffusion to self propulsion

돈

Isotropic particles

Brownian like motion

Polar particles

Directed Random Walk

Outline: from active liquids to active solids

- Active fluids : a brief overview with a focus on collective motion
- mechanical pressure is not a state variable

■ liquid-gas phase separation takes place in purely repulsive systems

- collective motion
- Active solids :
- spontaneous flows can take place in crystalline structure
- selective \& collective actuation emerges in linear elastic systems

Outline: from active liquids to active solids

- Active fluids : a brief overview with a focus on collective motion
- mechanical pressure is not a state variable

■ liquid-gas phase separation takes place in purely repulsive systems

- collective motion
- Active solids :
- spontaneous flows can take place in crystalline structure
- selective \& collective actuation emerges in linear elastic systems

Pressure in passive and active system

－At equilibrium
－Mechanical force against a wall $P_{\text {mech }}=\frac{F_{\text {wall }}}{S}$
■ Hydrodynamics ：Flux of momentum $\partial_{t} g+\operatorname{div}(\sigma)=f_{e x t} \quad P_{h y}=\operatorname{tr}(\sigma) / d$
－Thermodynamics $P_{t h}=-\frac{\partial \mathcal{F}}{\partial V}$

■ Momentum conservation $=>P_{h y}=P_{\text {mech }}$
－Boltzmann distribution＝＞$\quad P_{t h}=P_{\text {mech }}$
■ In the thermodynamic limit：EOS $P_{\text {hydro }}=P_{\text {mech }}=P_{t h}=f(\rho, T)$
－Active systems
■ No Momentum conservation＝＞$P_{h y} \stackrel{?}{=} P_{\text {mech }}$
■ No Boltzmann distribution＝＞$\quad P / h=P_{\text {mech }}$

Mechanical Pressure in active systems : theory

Following the Virial theorem introducing an active part

$$
-\left\langle\sum_{i} f_{i}^{e x t} r_{i}\right\rangle=E_{k i n}+\left\langle\sum_{i} f_{i}^{i n t} r_{i}\right\rangle+\left\langle\sum_{i} f_{i}^{a c t} r_{i}\right\rangle
$$

NB: "swim pressure" depends on interaction because $f_{i}^{a c t}$ aims at $|v| \rightarrow v_{0}$

- Pressure against a wall

$$
P=\int d x \rho(x) V_{w}^{\prime}(x)
$$

- In both cases

In ABP without interaction $p_{s}^{0}=\rho \frac{v_{0}^{2}}{2 \mu D_{r}}$; with interaction $p_{s}=\rho \frac{v_{0} v(\rho)}{2 D_{r} \mu}$

- Other than ABP : no EOS

Yang, Manning \& Marchetti, Soft Matter 10, 6477 (2014) Mallory, Sarić, Valeriani \& Cacciuto, PRE 89, 052303 (2014) Takatori \& Brady, PRL 113, 028103 (2014) Solon, Fily et al Nature Phys. 10.1038 (2015) Solon et al. PRL (2015)

Hydrostatic Pressure in active system : experiments
Ginot et al. Phys Rev X 5, 011004 (2015)

$\Pi(z)=\frac{m g \sin \theta}{\pi R^{2}} \int_{z}^{L} d z^{\prime} \phi\left(z^{\prime}\right)$

$$
P(z)=\Pi(z)-\Pi_{0}
$$

29/10/2021

Measuring pressure in the vibrated grains : the barometer

Torque free membrane
Mechanical Equilibrium

$$
P \times D=2 F \sin (\theta)
$$

Geometry
$\frac{D}{2 R}=\sin (\theta)$
Laplace Law
$P=F / R$

Need for $F(\langle L\rangle)$ the mechanical law of the membrane

A model entropic membrane : the necklace

$\checkmark J=92$ or 147 points
\checkmark Rigid rods $\quad L_{\max }=J \ell$
\checkmark Torque free ball joints
\checkmark Maximal opening $\quad \eta_{\max }=\pi / 8$
Monte Carlo sampling of Z

$$
\begin{aligned}
& \langle L\rangle(F, J)=\frac{1}{\beta}\left[\frac{\partial}{\partial F} \ln (Z)\right]_{J} \\
& \beta \ell F=\mathcal{F}\left(\frac{\langle L\rangle}{L_{\max }}\right)
\end{aligned}
$$

$\begin{array}{lllllll}0.7 & 0.75 & 0.8 & 0.85 & 0.9 & 0.95 & 1\end{array}$
29/10/2021

Mechanical pressure for Isotropic vs. Polar Disks

$\Phi_{\text {iso }}=0.32$
$\Phi_{\text {spp }}=0.08$

$$
\begin{aligned}
& \text { a : particle area } \\
& P^{*}=\beta P a=\frac{a}{\ell \underline{R}} \mathcal{F}\left(\frac{\langle L\rangle}{L_{\max }}\right)
\end{aligned}
$$

$$
\Pi_{i s o}^{*}=\frac{\beta}{\beta_{i s o}} \phi \frac{1+\frac{1}{8} \phi^{2}}{(1-\phi)^{2}}
$$

Equilibration for two different walls...

- Change the chain same total length $L_{\max }$, but more units $\mathrm{J}=147$

The mechanical pressure is not a state variable

The mechanical pressure is not a state variable
Why ? the vibrated disk are a priori very similar to ABP, no EOS

- The reason is : active torque

$$
\begin{aligned}
m \dot{\mathbf{v}}= & F_{0} \hat{\mathbf{n}}-\gamma_{t} \mathbf{v}+\mathbf{F}_{e x t} \\
J \dot{\omega}= & \uparrow-\gamma_{r} \omega+\boldsymbol{\Gamma}_{e x t}+\sqrt{2 D} \xi \mathbf{n}_{\perp} \\
& \Gamma_{a}=\zeta(\hat{\mathbf{n}} \times \mathbf{v}) \times \hat{\mathbf{n}}
\end{aligned}
$$

Self-alignment

Outline: from active liquids to active solids

- Active fluids : a brief overview with a focus on collective motion
- mechanical pressure is not a state variable

■ liquid-gas phase separation takes place in purely repulsive systems

- collective motion
- Active solids :
- spontaneous flows can take place in crystalline structure
- selective \& collective actuation emerges in linear elastic systems

Transition to collective motion in Point Particles models

Vicseck model

- Over damped, self propelled Point Particles
- Moving at velocity $\mathrm{V}_{0} \mathrm{n}$
- Alignment with neighbors (within some range)
- + Noise

\Rightarrow transition to collective motion is discontinuous
\Rightarrow fast domain growth leading to high-density/high order solitary bands/sheets (2D/3D)
\Rightarrow In the polar state: giant density fluctuations
(splay modes)

Experiment I :Vibrated grains

Isotropic particles

Polar particles

... collective motion and polar ordering

$$
\Psi(t)=\left|\left\langle\vec{u}_{i}(t)\right\rangle\right|
$$

Collective motion color coded by local alignment

Why such collective motion for self propelled hard disks?

Model

29/10/2021

A true transition to collective motion

Periodic boundary conditions

Experiment II : Rolling Colloids

Goals

- A well controlled 2D experiment
- Polar self propulsion
- Interactions
- Repulsion
- Polar alignment

Achieved with :

- PMMA colloids ($a=2.4 \mu \mathrm{~m}$)
- In AOT/hexadecane solution
- Dark field or Bright field microscopy
- Acq between 70 and 900 i/s
- $V_{0} \sim\left(E_{0}^{2} / E_{Q}^{2}-1\right)^{1 / 2} \sim 10^{2}$ and $10^{3} \mathrm{~d} / \mathrm{s}$

Transition to collective motion

29/10/2021

Interactions (electrostatics + far field hydrodynamics)

- Assuming pairwise interactions

$$
\begin{aligned}
\dot{\mathbf{r}}_{i} & =v_{0} \hat{\mathbf{p}}_{\mathbf{i}} \\
\dot{\theta}_{i} & =\frac{1}{\tau} \frac{\partial}{\partial \theta_{i}} \sum_{j \neq i} \mathcal{H}_{\mathrm{eff}}\left(\mathbf{r}_{i}-\mathbf{r}_{j}, \hat{\mathbf{p}}_{i}, \hat{\mathbf{p}}_{j}\right)+\sqrt{2 D_{r}} \xi_{i}(t)
\end{aligned}
$$

$$
\begin{gathered}
\text { alignment } \\
\mathcal{H}_{\mathrm{eff}}\left(\mathbf{r}, \hat{\mathbf{p}}_{i}, \hat{\mathbf{p}}_{j}\right)=A(r) \hat{\mathbf{p}}_{j} \cdot \hat{\mathbf{p}}_{i}+B(r) \hat{\mathbf{r}} \cdot \hat{\mathbf{p}}_{i}+C(r) \hat{\mathbf{p}}_{j} \cdot(2 \hat{\mathbf{r}} \hat{\mathbf{r}}-\mathbf{I}) \cdot \hat{\mathbf{p}}_{i}
\end{gathered}
$$

$$
A(r)=3 \tilde{\mu}_{s} \frac{a^{3}}{r^{3}} \Theta(r)+9\left(\frac{\mu_{\perp}}{\mu_{r}}-1\right)\left(\chi^{\infty}+\frac{1}{2}\right)\left(1-\frac{E_{\mathrm{Q}}^{2}}{E_{0}^{2}}\right) \frac{a^{5}}{r^{5}} \Theta(r)
$$

hydrodynamics
$B(r)=6\left(\frac{\mu_{\perp}}{\mu_{r}}-1\right) \sqrt{\frac{E_{0}^{2}}{E_{\mathrm{Q}}^{2}}-1}\left[\left(\chi^{\infty}+\frac{1}{2}\right) \frac{E_{\mathrm{Q}}^{2}}{E_{0}^{2}}-\chi^{\infty}\right] \frac{a^{4}}{r^{4}} \Theta(r)$
$C(r)=6 \tilde{\mu}_{s} \frac{a}{H} \frac{a^{2}}{r^{2}}+3 \tilde{\mu}_{s} \frac{a^{3}}{r^{3}} \Theta(r)+15\left(\frac{\mu_{\perp}}{\mu_{r}}-1\right)\left(\chi^{\infty}+\frac{1}{2}\right)\left(1-\frac{E_{\mathrm{Q}}^{2}}{E_{0}^{2}}\right) \frac{a^{5}}{r^{5}} \Theta(r)$
electro-statics

Kinetic theory

From N Langevin equation to Fokker Planck for the N part distribution

$$
\frac{\partial \Psi^{(N)}}{\partial t}+\sum_{i} \nabla_{i} \cdot\left(v_{0} \hat{\mathbf{p}}_{i} \Psi^{(N)}\right)+\sum_{i} \frac{\partial}{\partial \theta_{i}}\left(\frac{1}{\tau} \sum_{j \neq i} \frac{\partial \mathcal{H}_{\mathrm{eff}}\left(\mathbf{r}_{i}-\mathbf{r}_{j}, \theta_{i}, \theta_{j}\right)}{\partial \theta_{i}} \Psi^{(N)}\right)-D_{r} \sum_{i} \frac{\partial^{2}}{\partial \theta_{i}^{2}} \Psi^{(N)}=0
$$

- Integrating out N-1 particles :

$$
\partial_{t} \Psi^{(1)}+v_{0} \hat{\mathbf{p}} \cdot \nabla \Psi^{(1)}+\frac{1}{\tau} \partial_{\theta} \int d^{2} \mathbf{r}^{\prime} \mathrm{d} \theta^{\prime} \frac{\partial \mathcal{H}_{\mathrm{eff}}\left(\mathbf{r}-\mathbf{r}^{\prime}, \theta, \theta^{\prime}\right)}{\partial \theta} \Psi^{(2)}\left(\mathbf{r}, \mathbf{r}^{\prime}, \theta, \theta^{\prime}, t\right)-D_{r} \partial_{\theta}^{2} \Psi^{(1)}=0
$$

- Molecular Chaos hypothesis + exclusion volume

$$
\Psi^{(2)}\left(\mathbf{r}, \mathbf{r}^{\prime}, \theta, \theta^{\prime}, t\right)= \begin{cases}0 & \text { if }\left|\mathbf{r}-\mathbf{r}^{\prime}\right|<2 a \\ \Psi^{(1)}(\mathbf{r}, \theta, t) \Psi^{(1)}\left(\mathbf{r}^{\prime}, \theta^{\prime}, t\right) & \text { if }\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \geq 2 a\end{cases}
$$

- A close integro-differential equation for $\Psi^{(1)}(r, \theta, t)$

$$
\partial_{t} \Psi-v_{0} \hat{\mathbf{p}} \cdot \nabla \Psi=\frac{1}{\tau} \partial_{\phi} \int_{\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \geq d} \Psi(\mathbf{r}, \phi, t) F\left(\mathbf{r}-\mathbf{r}^{\prime}, \phi, \phi^{\prime}\right) \Psi\left(\mathbf{r}^{\prime}, \phi^{\prime}, t\right) \mathrm{d}^{2} \mathbf{r}^{\prime} \mathrm{d} \phi^{\prime}+D_{r} \frac{\partial^{2}}{\partial \phi^{2}} \Psi
$$

Hydrodynamics Theory

Defining the hydrodynamics fields $\quad \phi(\mathbf{r}, t) \equiv \frac{1}{\pi a^{2}} \int \mathrm{~d} \theta \Psi^{(1)}(\mathbf{r}, \theta, t)$

$$
\begin{aligned}
& \boldsymbol{\Pi}(\mathbf{r}, t) \equiv \frac{\pi a^{2}}{\phi} \int \mathrm{~d} \theta \hat{\mathbf{p}} \Psi^{(1)}(\mathbf{r}, \theta, t) \\
& \mathbf{Q}(\mathbf{r}, t) \equiv \frac{\pi a^{2}}{\phi} \int \mathrm{~d} \theta\left(\hat{\mathbf{p}} \hat{\mathbf{p}}-\frac{1}{2} \mathbf{I}\right) \Psi^{(1)}(\mathbf{r}, \theta, t)
\end{aligned}
$$

Hydrodynamics equations

$$
\begin{aligned}
& \partial_{t} \phi+v_{0} \nabla \cdot(\phi \boldsymbol{\Pi})=0 \\
& \partial_{t} \boldsymbol{\Pi}(\mathbf{r}, t)=\mathcal{F}_{\Pi}(\Phi, \boldsymbol{\Pi}, \mathbf{Q}) \\
& \partial_{t} \mathbf{Q}(\mathbf{r}, t)=\mathcal{F}_{Q}(\Phi, \boldsymbol{\Pi}, \mathbf{Q}, \text { higher order moments })
\end{aligned}
$$

- Closure relations
- Close to the isotropic solution $\Psi^{(1)}(r, \theta, t) \propto \frac{1}{2 \pi}(1+2|\boldsymbol{\Pi}| \cos (\theta))$

$$
\begin{aligned}
\tau \partial_{t}(\phi \boldsymbol{\Pi})+\frac{3 v_{0} \alpha}{8 D_{r}}(\phi \boldsymbol{\Pi} \cdot \nabla) \phi \boldsymbol{\Pi}= & {\left[\alpha \phi-\tau D_{r}-\frac{\alpha^{2}}{2 \tau D_{r}}\left(\phi^{2} \Pi^{2}\right)\right] \phi \boldsymbol{\Pi}+\kappa \phi \mathbf{M} * \phi \boldsymbol{\Pi}-\frac{1}{2}\left(\tau v_{0}+a \beta \phi\right) \nabla \phi } \\
& -\frac{5 v_{0} \alpha}{8 D_{r}}(\nabla \cdot \phi \boldsymbol{\Pi}) \phi \boldsymbol{\Pi}+\frac{5 v_{0} \alpha}{16 D_{r}} \nabla\left(\phi^{2} \Pi^{2}\right)+\frac{\alpha \beta}{2 \tau D_{r}} a(\nabla \phi \cdot \phi \boldsymbol{\Pi}) \phi \boldsymbol{\Pi}+\mathcal{O}_{1}
\end{aligned}
$$

- Close to the polar solution $\Psi^{(1)}(r, \theta, t) \simeq$ Gaussian around $\bar{\theta}$

$$
\begin{aligned}
& \tau \partial_{t} \boldsymbol{\Pi}+\tau v_{0}(\boldsymbol{\Pi} \cdot \nabla) \boldsymbol{\Pi}=\left[2 a^{2}(\beta+\gamma)\left(1-\Pi^{2}\right) \rho-\tau D_{r}\right] \boldsymbol{\Pi}-2 a^{3} \alpha(\mathbb{1}-\boldsymbol{\Pi} \boldsymbol{\Pi}) \cdot \nabla \rho \\
&-2 a^{2} \kappa(\mathbb{1}-\boldsymbol{\Pi} \boldsymbol{\Pi}) \mathbf{M} \cdot(\rho \boldsymbol{\Pi})+\mathcal{O}\left(\nabla^{2}\right)
\end{aligned}
$$

Hydrodynamics applications (I)

Near onset : \quad Homogeneous solution: $\Pi_{0}\left(\phi_{0}\right)= \begin{cases}\sqrt{2 \frac{\phi_{c}}{\phi_{0}}\left(1-\frac{\phi_{c}}{\phi_{0}}\right)} & \text { if } \phi_{0}>\phi_{c} \\ 0 & \text { if } \phi_{0} \leq \phi_{c}\end{cases}$

- Linear stability analysis => homogeneous solution is unstable
\checkmark Steady propagating solutions : $\Pi(s)=\frac{c_{\text {band }}}{v_{0}}\left(1-\frac{\phi_{\infty}}{\phi(s)}\right)$

Hydrodynamics theory (ii)

- In the polar phase : sound propagation

D Geyer, A Morin \& D Bartolo
Nature Materials 17, 789-793 (2018)

$$
2 c_{ \pm}(\theta)=\left(1+\lambda_{1}\right) u_{0} \cos \theta \pm \sqrt{\left(\lambda_{1}-1\right)^{2} u_{0}^{2} \cos ^{2} \theta+4 \sigma \rho_{0} \sin ^{2} \theta}
$$

Summary for rolling colloids

- Constant velocity
- Explicit Alignment interactions (electrostatic and hydrodynamics) at low enough density to avoid hard core interactions => point like.
=> the perfect system for realizing the Vicsek scenario
- Indeed observed
- First order transition to collective motion
- Polar bands
- True Long Range Order polar motion
- Sound waves in the polar phase
- An excellent confirmation of the linear hydrodynamics theory
\rightarrow Giant density fluctuations
- Present but impossible to validate exponent

Outline: from active liquids to active solids

- Active fluids : a brief overview with a focus on collective motion
- mechanical pressure is not a state variable

■ liquid-gas phase separation takes place in purely repulsive systems

- macroscopic flows emerge in the absence of external gradient
- Active solids :
- spontaneous flows also take place in crystalline structure
- selective \& collective actuation emerges in linear elastic systems

Increasing Packing Fraction might be relevant...

Possible situations \& questions

-Crowding effects

- Slowing down => MIPS

- Alignment could suppress the slowing down => avoided MIPS
- Structural ordering
- Does crystallization takes place or do active stresses prevent it?
- Alignment could reduce the active stresses => promote the crystal
- Today : One specific system -> Self Propelled Hard Disks
- Does spontaneous alignment survive?

Phase space : what shall we expect?

$$
\mathrm{Pe} \sim 1-10
$$

At first sight ...

Structural properties : pair correlation function

- In both cases order emerges for $\phi=0.72$
- However in the active case
- Correlation length is smaller
- More importantly : order sets in with almost a close packed structure!

Structural properties : orientational order

$$
\psi_{6}^{p}=\left[\frac{1}{n_{p}} \sum_{\langle p q\rangle} \exp \left(6 i \theta_{p q}\right)\right]
$$

Structural properties : orientational order

The transition to an ordered phase is delayed to much higher density
The order of the transition is unclear : phase coexistence?

Dynamics : Mean Square Displacement

- The abrupt caging observed at equilibrium never takes place!

The dynamics remains super-diffusive at intermediate timescales => dynamics and structure fully decouple

Dynamics : structural relaxation

$$
Q(a, \tau)=\left\langle\frac{1}{N} \sum_{p} \exp -\frac{\left[\mathbf{r}_{p}(t+\tau)-\mathbf{r}_{p}(t)\right]^{2}}{a^{2}}\right\rangle
$$

Indeed a rather weak slowing down of the dynamics ...
-The whole structure relaxes => a very different image from phase coexistence

A liquid of clusters

- No coarsening : a steady number and distribution of cluster
- An increasing number of fluctuating clusters
- A "percolation" like transition towards a system size dominating cluster

Proliferation of highly motile defects

A first draft for a phase diagram

Active liquid

Liquid of clusters

Percolating Cluster

+ Fragmentation

\checkmark What about higher packing fraction ?
\checkmark What if the boundaries do not frustrate the hexagonal symmetry ?

Active crystal of hard discs close to Ordered Closed Packing

Numerics

Experimental conditions
$\tau_{v} \dot{\mathbf{v}}=\hat{\mathbf{n}}-\mathbf{v}+F_{i n t}$
$\tau_{n} \dot{\hat{\mathbf{n}}}=(\hat{\mathbf{n}} \times \mathbf{v}) \times \mathbf{n}+\sqrt{2 D} \xi \mathbf{n}_{\perp}$

In the noiseless limit

A bona fide flowing crystaline phase !

Structure and dynamics within the hexagon

Shear localizes on stacking faults to preserve structural order

The larger, the more ordered, the faster

Outline: from active liquids to active solids

- Active fluids : a brief overview with a focus on collective motion
- mechanical pressure is not a state variable

■ liquid-gas phase separation takes place in purely repulsive systems

- macroscopic flows emerge in the absence of external gradient
- Active solids :
- spontaneous flows also take place in crystalline structure
- selective \& collective actuation emerges in linear elastic systems

Active elastic lattices : the epitome of active solids

- Self alignment

$$
\pi=\frac{l_{e}}{l_{a}}=\frac{F_{0}}{k l_{a}}
$$

The one particle problem

$$
\begin{aligned}
|\dot{\boldsymbol{u}}\rangle & =\pi|\hat{\mathbf{n}}\rangle-\mathbb{M}|\boldsymbol{u}\rangle \\
|\dot{\boldsymbol{n}}\rangle & =-\mathbb{K}^{T} \mathbb{K} \mathbb{M}|\boldsymbol{u}\rangle
\end{aligned}
$$

An infinite set of fixed points

$$
\left\{|\mathbf{u}\rangle=\pi \mathbb{M}^{-1}|\hat{\mathbf{n}}\rangle,|\hat{\mathbf{n}}\rangle\right\}
$$

From collective motion to collective actuation

Pinned boundary conditions
=> No zero mode

$$
\pi=\frac{l_{e}}{l_{a}}=\frac{F_{0}}{k l_{a}}
$$

Collective actuation in overdamped and harmonic dynamics

$$
\begin{aligned}
\tau_{v} \dot{\boldsymbol{v}}_{i}=\hat{\boldsymbol{n}}_{\boldsymbol{i}}-\boldsymbol{v}_{i}+\boldsymbol{F}_{i} & \text { overdamped } \\
\tau_{n} \dot{\boldsymbol{n}}_{i}=\left(\hat{\boldsymbol{n}}_{\boldsymbol{i}} \times \boldsymbol{v}_{i}\right) \times \hat{\boldsymbol{n}}_{\boldsymbol{i}} & + \text { harmonic }
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& \dot{\boldsymbol{u}}_{i}=\pi \hat{\boldsymbol{n}}_{\boldsymbol{i}}-\mathbb{M}_{i j} \boldsymbol{u}_{\boldsymbol{j}} \\
& \dot{\boldsymbol{n}}_{i}=-\left(\hat{\boldsymbol{n}}_{\boldsymbol{i}} \times \mathbb{M}_{i j} \boldsymbol{u}_{\boldsymbol{j}}\right) \times \hat{\boldsymbol{n}}_{\boldsymbol{i}}
\end{aligned}
$$

A solid dynamical chiral phase with spontaneously broken parity symmetry

Collective actuation takes place on a few selected modes

A non trivial modal selection, rooted in the mode geometries

29/10/2021

N particles in a chain

29/10/2021

The transition to collective actuation is discontinuous

Coexistence between the frozen disordered phase and the chiral one

Outlook

- Active matter physics started with the study of collective motion in flocks of birds in 1995.
- In the past 25 years, active liquids have driven a very intense research
- physicists have designed a large amount of model experimental systems and numerical models
- => the observations of a bunch of striking and interesting phenomena
- kinetic and field theories => a rather good understanding of these phenomena
- More recently the study of biological tissues has driven the attention towards highly dense systems, eventually behaving as solids rather than liquids
- A lot remains to be done to fully understand the physics of active solids.
- Tools of (harder) condensed matter physics are likely to become increasingly helpful

Mechanical Pressure : Phys. Rev. Lett. 119028002 (2017).
Collective motion of discs : Phys. Rev. Lett. 105, 098001 (2010)
Phys. Rev. Lett. 110, 208001 (2013).
Collective motion of colloids : Nature 503, 95-98 (2013).
Flowing Crystal of discs: Phys. Rev. Lett. 120, 208001 (2018).
Collective actuation :
In preparation
THANK YOU!
(u) river

