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What is active matter ?

u The matter of which atoms are active units

u Each active unit follows dynamics with 

broken time reversal symmetry

broken space isotropy
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Why is Active Matter interesting for physicists?

29/10/2021

u The simplest out of equilibrium matter phases, with new physics

u In active fluids
mechanical pressure is not a state variable
liquid-gas phase separation takes place in purely 
repulsive systems
macroscopic flows emerge in the absence of 
external gradient : collective motion

u In active solids
spontaneous flows can 
take place in crystalline 
structure
selective & collective 
oscillations emerge in 
overdamped linear 
elastic systemsu It offers a unique point of view on traditional matter



4

Active matter outside of the realm of the living world or robotics
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Brownian Motion
Detailed Balance

Isotropic

nematic

Shaken rice grains

Shaken sunflower seed

polar

With carefully designed time-varying magnetic fields,
dynamic structures result. For example, magnetic Janus particles
assembled into tubular structures when subjected to a
precessive magnetic field. The magnetically responsive (nickel)
coatings experienced a torque with two orthogonal components
driving the particles to rotate around the precessing axis and
oscillate perpendicular to the rotating plane simultaneously. To
form stable tube structures, particles within the microtube must
maintain their orientation within the rotating microtube while
both rotate at the same time. Thus, the structure is controlled
by dynamic synchronization criteria rather than static energy
minimization as would be the case for equilibrium self-assembly
and field-induced assembly.

4. APPLICATIONS
Numerous potential applications follow from the fact that Janus
particles possess two distinguishable faces. They can be used as
microprobes or sensors: this is because translational and
rotational diffusion can reveal information about the local
environment.65 The two faces can respond to external stimuli
differently. Because they represent two different states of the
particle, a collection of them can carry much information and
possibly be used as a display; this application has already been
achieved in electronic ink technology.66 The broken symmetry
can allow particles to undergo active transport, which opens
possibilities to design micromotors.67,68 Finally, as foreseen by
de Gennes,2 Janus particles can be used as solid surfactants.
4.1. Microprobes for Microrheology and Bioimaging.

Janus particles with distinct optical properties on two
hemispheres can be used as tracers to probe the rheological
properties of their local environment. Their optical properties
are modulated by rotational diffusion to provide information in
addition to the position of the tracers provided by conventional
tracer particles.69 This generates useful new information in
complex environments where translational and rotational
diffusion are not proportional, such as glassy materials and
materials under shear.70 The most interesting scenarios are
when they are decoupled, for example, colloids’ transport on a
patterned surface71 and shape-dependent diffusion.72 To avoid

artifacts, the two optically different faces should have the same
physical interactions with their environment, which may be
tricky experimentally.

4.2. Micromotors. When designed carefully, Janus particles
suspended in a proper fuel solution will swim autonomously as
a result of the anisotropic response of their chemical makeup to
the environment. Over the past decade, synthetic micromotors
have been developed on the basis of different mechanisms,
most of which require broken symmetry on each particle. These
include self-diffusiophoresis (chemotactic),73 bubble propul-
sion,38 induced charge electrophoresis (ICEP),74 self-thermo-
phoresis,75,76 and self-electrophoresis,77,78 all of which involve
creating a local gradient or field associated with the particles
themselves to drive their motion.79

When a polystyrene sphere with a platinum cap is placed in
hydrogen peroxide solution, platinum catalyzes the local
decomposition of hydrogen peroxide into water and oxygen.
The resulting asymmetric distribution of reaction products
propels the particle by self-diffusiophoresis (Figure 11A). This
model of propulsion at low Reynolds number was proposed
theoretically in 2005 and realized experimentally in 2007 by
Golestanian and co-workers.73,80 Because gas is generated
during this catalytic reaction, bubble propulsion can compete
with self-diffusiophoresis. Wu and co-workers recently
compared the swimming behavior of physically deposited and
chemically deposited platinum-dielectric particles and con-
cluded that self-diffusiophoresis usually dominated for Janus
particles with smooth metal films that were deposited by
physical methods, whereas bubble propulsion dominates for
chemically deposited coatings with rough metal surfaces whose
defects provided nucleation sites for bubbles.38 In the bimetal
nanomotor system, the dominant mechanism is believed to be
an electrochemical reaction of H2O2 fuel solutions that generate
self-electrophoresis (Figure 11B).77

A similar propulsion mechanism can be achieved by self-
thermophoresis when a half-metal coated colloidal particle is
placed under laser irradiation.75,76 The metal-coated hemi-
sphere absorbs and heats up more than the uncoated portion,
and the resulting local temperature gradient propels these

Figure 11. Janus micromotors. (A) A Janus particle driven by self-diffusiophoresis moves toward the nonreacting side in H2O2 fuel solution. Adapted
with permission from ref 73. (B) A Pt−Au Janus rod is driven by self-electrophoresis to the Pt side in a H2O2 fuel solution. Adapted with permission
from ref 78. (C) The direction of particle motion driven by self-thermophoresis differs for a Janus particle in water (positive Soret coefficient) and in
Triton X-100 solution (negative Soret coefficient). Adapted with permission from ref 76. (D) A Janus particle driven by ICEP swims toward the
dielectric side. Adapted with permission from ref 74.
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whereêisthedirectionofswimming.Thevalueoftheforcefis
computedbyenforcingthesteadinessofthecolloidinthe
laboratoryframeofreference.Theflowfieldaroundthecolloid
whenitisfreelymovingisobtainedinasimilarfashion,but
withoutthecontributionfromtheforcemonopoleandsubjectto
theboundaryconditionlimr!1u¼&Uê,whereU¼2B1=3is
theswimmingvelocityofthecolloid.Inthisexperiment,the
averagevelocityforthemovingJanuscolloidsdeterminedby

mean-squareddisplacementfittingwasU=5.37±1.64μms−1,
andthisvaluewasusedtonormalisethepresenteddata.

IntheMethodssection,wegivetheexpressionofthevelocity
fieldaroundthestuckcolloidus(r,θ)andaroundafreelymoving
colloidum(r,θ)intheequatorialplane.Theyonlydependonthe
setsofLegendrecoefficientsfBngn'1.Eachofthesetwofieldshas
componentsalongêrandêθ,andaremeasuredexperimentally.
Wethereforegetfourdatasets,thatdependonthetwovariables
(r,θ)andtheparameters{Bn}.Weassumethatthesumsover
theLegendrepolynomialsaretruncatedatsomeorderN(herewe
useN=5).Weusethefunctionsdeterminedanalytically(see
Methods)asfittingfunctionsfortheexperimentaldata,sothat
weobtainfoursetsoffitparametersB1,…,B5.Thedatasetsare
shownintheinsetofFig.1b,togetherwiththeaverageandthe
standarddeviationforeachcase.Inthisfigure,wealsoshow
theslipvelocity~vðθÞ¼

P5
n¼1BnVnðcosθÞreconstructedfrom

thesefitparameters.Weobservethatitisgreaterinmagnitude
onthePthemisphere,veryclosetozeroatθ=π/2andπ,andhas
amaximumbetweenπ/2andπ.

Asimplifiedslipvelocityfunction.Forfurtherapplications,it
canbeusefultousethesimplifiedform17

vðθÞ¼
v0ð1þcosθÞð&cosθÞforπ=2<θ<π;

0otherwise:

#
ð5Þ

SeeFig.1aforadefinitionofthenotations,andFig.1bfora
representationoftheslipvelocityasafunctionofthepolarangle
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Fig.1ExperimentalmeasurementsoftheflowfieldaroundanactiveJanussphere.(a)SketchofthePt-PSJanusparticleandnotations.̂eisthedirectionof
swimming.Theredarrowsrepresentthecurrentloopsthatstartattheequatoroftheparticleandendatitspole13,16,17.(b)Inset:Firstfivecoefficientsin
theexpansionofv(θ)inLegendrepolynomials,obtainedasfittingparametersoftheexperimentalradialandtangentialvelocities,inthecaseswherethe
colloidisstuckorfreelymoving(blue:stuck,red:moving;triangle:radial,square:tangential).Theaveragesareshownasblackdots,andtheerrorbars
correspondtothestandarddeviations.Main:Plotoftheslipvelocity~vðθÞreconstructedfromtheaveragesoftheLegendrecoefficientsobtainedfromthefit
(dashed)comparedwiththesimplifiedexpressionforv(θ)weuseforfurtheranalysis.(c–f)StreamlinesaroundtheJanusparticlesobtainedexperimentally
(c,d)andanalytically(e,f),inthetwosituationswheretheparticleisstuck(c,e)andfreelymoving(d,f).Thebackgroundcoloursrepresentthe
magnitudeofthevelocityu¼jujrescaledbytheswimmingvelocityoftheJanusparticlewhenitisfreelymoving
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The walking grains : from diffusion to self propulsion

Directed Random Walk

Rapport de stage Gaspard Junot

2 Set up and protocole

In this section I will present the set up and the acquisition methods I used to mesure and compute
the pressure for passive and active hard disks.

2.1 Set up

To shake the particles we use an electromagnetic servo-controlled shaker which drives a glass plate
on which the particles lay. The plate vibrates at a frequency f = 95Hz with an acceleration � = 3, 0g.
On top of the glass plate an other plate in plexiglass confines the particles in 2 dimensions. We laterally
confined the particles in a flower-shaped arena of internal diameter D = 25cm. The flower shape avoid
the stagnation of particule at the boundaries by "reinjecting" them into the bulk. There are two kind
of particles : the isotropic one (ISO) and the anisotropic one (SPP). Both have a cylindrical head in
a copper-beryllium with a diameter of 4mm. The ISOs have a cylindrical foot and the SPPs have an
anisotropic one. It turns that when the plate vibrates the ISOs undergo a random walk while the SPPs
undergo a persistant random walk with a given persistance length due to the asymmetry of there foots.

2mm 4mm2mm 4mm

(a) (b)

(c) (d)

Figure 1 – Passive and active disks behavior. (a) side and bottom view of an active disk with the
built-in polarity ~n. (b) side and bottom view of a passive disk. (c) Individuals trajectories of active disks
at an acceleration � = 2.7, the black and red arrows indicate ~vi and ~ni at selected times. The domaine
area is about 15x15 diameter. (d) Same for the passive disks. Julien Deseigne, Sébastien Léonard,
Olivier Dauchot and Hugues Chaté : Vibrated polar disks : spontaneous motion, binary collisions, and
collective dynamics, Soft matter, 2012, 8, 5629-5639.

To investigate the question of pressure I have fixed a chain to two diametrically opposed points of the
arena. I chose the length of the chain so that it is not completely stretched but free to fluctuate under
plate vibrations or particle collisions. The chain is made of 92 beads tied by rigid rods, the diameter
of the beads is 2mm and the length of a rod is 3mm. Two rods can freely rotate with respect to each
other until they reach a maximum angle of pi/18.

2.2 Acquisition

In this system of hard disks we are interested in two observables : the position of the chain and the
area defined by this position. To have access to these informations a camera takes images of this 2D
system at the frame rate of 1Hz and we typically take 3600 images for each experiment to have correct
averaged quantities. Before the acquisition we wait 20min to ensure that the system have reached a
stationary state. From the images taken I coded a matlab program able to detected the area boundary,
the beads of the chain and then rebuild the whole chain. The programme mainly woks in the following

5

Brownian like motion

Isotropic particles Polar particles
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Outline: from active liquids to active solids

u Active fluids : a brief overview with a focus on collective motion
mechanical pressure is not a state variable
liquid-gas phase separation takes place in purely repulsive systems
collective motion

u Active solids :
spontaneous flows can take place in crystalline structure
selective & collective actuation emerges in linear elastic systems

29/10/2021
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Pressure in passive and active system

u At equilibrium

Mechanical force against a wall

Hydrodynamics : Flux of momentum

Thermodynamics

Momentum conservation =>

Boltzmann distribution => 

In the thermodynamic limit: EOS

u Active systems

No Momentum conservation =>

No Boltzmann distribution => 

29/10/2021

Pmech =
Fwall

S
@tg + div(�) = fext Phy = tr(�)/d

Phy = Pmech

Pth = Pmech

Pth = �@F
@V

Phydro = Pmech = Pth = f(⇢, T )

Phy = Pmech

Pth = Pmech

?
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Mechanical Pressure in active systems : theory

u Following the Virial theorem introducing an active part

NB: “swim pressure” depends on interaction because          aims at

u Pressure against a wall

uIn both cases

ABP without interaction                           ; with interaction

Other than ABP : no EOS

29/10/2021
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Hydrostatic Pressure in active system : experiments
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3

regimes observed for Janus colloids. For both systems,
the passive case reveals equilibrium configurations from
a dilute fluid to a dense homogeneous amorphous phase,
while active systems exhibit much richer structures. The
dilute gas spreads over larger altitudes, finite size clus-
ters are observed at moderate densities, gel-like configu-
rations are found at larger densities, and dense, arrested
phases exist at the bottom of the cell, as revealed by
these images. These various phases have been carefully
analysed in the numerical model [19, 33], but only the
cluster phase was studied experimentally before [12]. In
the following we shall record and analyse quantitatively
the equation of state of both systems over a range of den-
sities where dynamics is not arrested and steady state
conditions can be achieved.

III. SEDIMENTATION PROFILES: DILUTE
LIMIT AND EFFECTIVE TEMPERATURE

Our basic physical observable is the density profile �(z)
measured along the direction of the gravity from the im-
ages shown in Fig. 1 (see Methods). In Fig. 2a we show
the density profiles obtained experimentally for di↵erent
activities, which confirms the large range of densities ex-
plored in each experiment. We focus in Fig. 2b on the
dilute phase at small density (large z) and observe that
for � . 0.05 the density evolves exponentially with the
position with a decay rate evolving continuously with the
activity. We have obtained similar exponential profiles in
the simulations.

The experimental results suggest that in the dilute
limit, the system behaves as an ideal gas with an
activity-dependent e↵ective temperature, Te↵, such that
�(z) ⇠ exp [�mgz sin ✓/(kBTe↵)] where m is the mass
of a colloid and kB the Boltzman constant. From the
linear fits shown in Fig. 2b, we extract the value of
kBTe↵/(mg sin ✓) for various activities. These measure-
ments are more precise for Pe above 10, as the dilute
phase extends over larger distances; kBT0/(mg sin ✓) is
then evaluated from the evolution of kBTe↵/(mg sin ✓)
with Pe. Overall, our results in this regime agree with
earlier work on dilute suspensions [8], and the theoretical
expression, Te↵/T0 = 1 + 2

9Pe2 is recovered, see inset of
Fig. 2a. Quantitatively, we observe that Te↵ increases
from the thermal bath temperature Te↵ ⇡ T0 ⇡ 300K
for passive colloids (from which we determine the tilt an-
gle ✓ ⇡ 8.10�3

± 2.10�3) to a maximum value of about
Te↵ ⇡ 3.104 K for the most active system.

In the simulations, we find similarly that �(z) de-
cays exponentially with z. We have verified numerically
that the dependence on the gravity field G is given by
�(z) ⇠ exp[�zG/(kBTe↵)], which defines an e↵ective
temperature. Exponential decay is obeyed over about
4 decades for � 2 [10�6, 10�2]. The lower bound stems
from statistical accuracy, but the upper bound emerges
because profiles become non-exponential when density is
large enough for many-body interactions to play a role.

Numerically, Te↵ is directly proportional to the persis-
tence time of the self-propulsion, Te↵ / ⌧ . Therefore,
self-propelled hard disks under gravity also behave at low
density, � ⌧ 10�2, as an ideal gas with an e↵ective tem-
perature di↵erent from the bath temperature, Te↵ > T0.
To reinforce this view, we performed additional sim-

ulations in the absence of gravity where we measured
in the dilute limit � ! 0 both the self-di↵usion coe�-
cient Ds (from the long-time limit of the mean-squared
displacement) and the mobility µ (measured from the
long-time limit of the response to a constant force in the
linear response regime). The di↵usion constant scales
with the persistence time Ds / ⌧ , as expected [19], and
we find that the mobility does not scale with ⌧ , such that
Ds/µ / ⌧ . Our simulations indicate that the equality

kBTe↵ = Ds/µ (1)

holds quantitatively, within our statistical accuracy.
Equation (1) states that the same e↵ective temperature
controls the sedimentation profiles and the (e↵ective)
Einstein relation between di↵usion and mobility. Hence,
it is justified to describe self-propelled particles as an
‘e↵ective ideal gas’. These conclusions are far from triv-
ial, as they do not hold for all types of active particles
(run-and-tumble bacteria being a relevant counterexam-
ple [9]), while the mapping to an ideal gas may break
down in more complex geometries even for self-propelled
particles [10]. Finally, note that Te↵ is a single particle
quantity, which is conceptually distinct from the (col-
lective) e↵ective temperature emerging in dense glassy
regimes [34].

IV. NONEQUILIBRIUM EQUATION OF STATE
IN ACTIVE SUSPENSIONS

Provided we measure density profiles in steady state
conditions, and using the sole assumption of mechanical
equilibrium [27], we can convert the measured profiles
into a pressure measurement, P (z) = ⇧(z) � ⇧0, where
⇧0 is the pressure at the top of the observation cell and

⇧(z) = mg sin ✓
⇡R2

R L
z dz0�(z0). We can then represent the

parametric evolution of P (z) with �(z) by varying z,
which gives direct access to the nonequilibrium equation
of state P (�). To our knowledge, there is no previous ex-
perimental report of such quantities, that have only very
recently been discussed in theoretical work [23–25]. In
Figs. 3a,b we present the outcome of this analysis, and
show the evolution of the normalised osmotic pressure
P/(kBT0) for various activities in experiments and sim-
ulations. In Figs. 3c,d we replot the same set of data to
examine how the compressibility factor Z = P/(⇢kBT0),
with ⇢ the number density, depends on density �. This
second representation o↵ers a finer perspective on the
nonequilibrium equation of state, as the ideal gas be-
haviour at low � is scaled out.
In the dilute regime, we recover the ‘e↵ective’ ideal

gas behavior, P = ⇢kBTe↵ , which directly follows from
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holds quantitatively, within our statistical accuracy.
Equation (1) states that the same e↵ective temperature
controls the sedimentation profiles and the (e↵ective)
Einstein relation between di↵usion and mobility. Hence,
it is justified to describe self-propelled particles as an
‘e↵ective ideal gas’. These conclusions are far from triv-
ial, as they do not hold for all types of active particles
(run-and-tumble bacteria being a relevant counterexam-
ple [9]), while the mapping to an ideal gas may break
down in more complex geometries even for self-propelled
particles [10]. Finally, note that Te↵ is a single particle
quantity, which is conceptually distinct from the (col-
lective) e↵ective temperature emerging in dense glassy
regimes [34].

IV. NONEQUILIBRIUM EQUATION OF STATE
IN ACTIVE SUSPENSIONS

Provided we measure density profiles in steady state
conditions, and using the sole assumption of mechanical
equilibrium [27], we can convert the measured profiles
into a pressure measurement, P (z) = ⇧(z) � ⇧0, where
⇧0 is the pressure at the top of the observation cell and

⇧(z) = mg sin ✓
⇡R2

R L
z dz0�(z0). We can then represent the

parametric evolution of P (z) with �(z) by varying z,
which gives direct access to the nonequilibrium equation
of state P (�). To our knowledge, there is no previous ex-
perimental report of such quantities, that have only very
recently been discussed in theoretical work [23–25]. In
Figs. 3a,b we present the outcome of this analysis, and
show the evolution of the normalised osmotic pressure
P/(kBT0) for various activities in experiments and sim-
ulations. In Figs. 3c,d we replot the same set of data to
examine how the compressibility factor Z = P/(⇢kBT0),
with ⇢ the number density, depends on density �. This
second representation o↵ers a finer perspective on the
nonequilibrium equation of state, as the ideal gas be-
haviour at low � is scaled out.
In the dilute regime, we recover the ‘e↵ective’ ideal

gas behavior, P = ⇢kBTe↵ , which directly follows from
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FIG. 2. Experimental density profiles (color online). (a) Density profiles for various activities, arbitrarily shifted horizontally
so that z0 corresponds to � = 0.2. Inset: evolution of Te↵ as a function of the Péclet number, together with the theoretical
expectation, Te↵/T0 = 1 + 2

9Pe2. (b) Zoom on the dilute phase � ⌧ 1 using a semi-log scale, with the associated exponential
fit, from which we extract the value of the e↵ective temperature.

integration of the exponential profiles of Fig. 2. This
linear dependence of P with � is more carefully examined
in Figs. 3c,d, as it translates into a finite value for Z(� !

0), namely Z(�) ! Te↵/T0, as observed. The data in
Figs. 3c,d thus provide a simple, direct measurement of
the e↵ective temperature in active suspensions.

More interesting is the behaviour at finite density,
which has not been explored experimentally before. Both
experimental and numerical data indicate that the func-
tional form of the equation of state changes continuously
as the activity increases, in a way that cannot be uniquely
accounted by the introduction of the e↵ective tempera-
ture. This is not surprising, as the images in Fig. 1 show
that the structure of the system at finite density changes
dramatically with activity. To confirm this, we first anal-
yse the data for passive systems. In that case, the equa-
tion of state can be well described by an empirical equa-
tion of state for hard disks [35, 36]. The agreement with
hard disks is not guaranteed in experiments, because it
is not obvious that (passive) Janus colloids uniquely in-
teract with hard core repulsion, but this seems to be a
good approximation. In the simulation, Fig. 3d (black
curves), we show that the data for passive disks agree
very well with the equilibrium Percus-Yevick equation of
state. This is expected, because the system becomes for
⌧ = 0 an equilibrium fluid of hard disks.

When activity increases, experiments and simulations
can no longer be described by the equilibrium hard disk
equation of state. Qualitatively, the compressibility fac-
tor Z(�) increases more weakly with � for moderately
active particles than for the passive system, and we ob-
serve that Z(�) even decreases with � for more active
systems at low �, so that Z(�) actually becomes a non-
monotonic function of � for large activity [23–25]. In
equilibrium systems, such a behaviour represents a direct

signature of adhesive interactions [31]. This suggests that
the strong clustering observed in Fig. 1 in active parti-
cle systems directly impacts the equation of state, which
takes a form reminiscent of equilibrium colloidal systems
with attractive interactions.

V. DETERMINATION OF EFFECTIVE
ADHESION INDUCED BY SELF-PROPULSION

The idea that self-propulsion provides a mechanism for
inducing e↵ective attractive forces in purely repulsive sys-
tems of active particles has recently emerged [14, 16, 25,
37]. Because we have direct access to the equation of
state in our systems of active particles, we are in a unique
position to study the similarity between the equation of
state of nonequilibrium active particles and equilibrium
adhesive disks. If successful, we can then quantify the
strength of the e↵ective adhesion between particles which
is induced by the self-propulsion mechanism.
To this end, we compare the equation of state obtained

for active particles to the equilibrium equation of state
of a system of adhesive particles. We have analysed the
equation of state of the Baxter model of adhesive parti-
cles in two dimensions [38]. This is a square-well poten-
tial with a hard core repulsion for r < �, and a short-
range repulsion of range � + � and depth

V (� < r < � + �) = �kBT ln

✓
� + �

4�
A

◆
, (2)

where A is a nondimensional number quantifying the ad-
hesion strength, and V (r > � + �) = 0. The model
is defined such that the adhesive limit can smoothly be
taken, where � ! 0, V (r = �+) ! 1 but the second
Virial coe�cient remains finite and is uniquely controlled
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FIG. 3. Equation of state and compressibility factor (color online). Equation of state P/(kBT0) versus linear density � for
experiment (a) and simulations (b). In (a) the inset is a zoom on the dilute phase, where lines represent the best linear
fit from which we recover Te↵ . (c) Compressiblity factor versus � for experiment. Black points: passive case; black dashed
curve: empirical equation of state for hard disks. Dashed color lines obtained from Eq. (3). (d) Compressiblity factor versus
� for simulations with dashed lines obtained from Percus-Yevick closure for two-dimensional Baxter model. Experiments:
Te↵/T0 = 1, 5, 15, 34, 47, 62, 87 (bottom to top). Simulations: ⌧ = 0, 1, 3, 10, 30, 100, 300, 1000 (bottom to top).

by the dimensionless adhesion parameter A [38, 39]. The
purely repulsive hard disk limit is recovered with A ! 0.
For this model, the first two Virial coe�cients are known
analytically [40]:

Z =
P

⇢kBT
= 1 + b1�+ b2�

2 +O(�3), (3)

with b1 = 2 � A, b2 = 25
8 �

25
8 A + 4

3A
2
� 0.122A3.

When A increases, the compressibility factor Z in Eq. (3)
changes from the monotonic hard disk behaviour to a
non-monotonic density dependence for A > 2 as the ini-
tial slope given by b1 then becomes negative.

The above expression provides a reasonable descrip-
tion of the experimental data, provided we carefully
adjust A for each activity. This provides a direct es-
timate of the ‘e↵ective adhesion’ induced by the self-
propulsion, which thus quantifies the nonequilibrium
clustering of self-propelled particles using a concept
drawn from equilibrium physics. In practice, we fit

the experimental compressibility factor at intermedi-
ate densities (0.04 < � < 0.4) with the expression
Z = ↵

�
1 + b1�+ b2�2 +O(�3)

�
, adjusting both the ef-

fective adhesion A and a prefactor ↵, which accounts for
the e↵ective temperature. Within errorbars, we obtain
↵ ⇡ Te↵/T0, confirming the robustness of the analysis.
We have also verified that the uncertainty on the deter-
mination of � (due to the uncertainty in particle diam-
eter) has a negligible impact on the measured A values.
As shown in Fig. 4, we find that the e↵ective adhesion A
increases with self-propulsion.

We carry out a similar analysis for the compressibil-
ity factors obtained numerically for self-propelled hard
disks. Because the numerical data are statistically accu-
rate over a broad density range, we solved the full Percus-
Yevick closure relation to obtain the equation of state of
the bidimensional Baxter model, and adjust A to obtain
the best agreement between self-propelled and adhesive
disks, as shown in Fig. 3d. As observed in the exper-

2

hesive interaction at finite density. From the known equa-
tion of state for adhesive disks at equilibrium, we extract
an e↵ective adhesion between active particles and find a
unique scaling law relating activity to self-propulsion in
both experiments and simulations.

II. SEDIMENTATION EXPERIMENTS IN
NONEQUILIBRIUM ACTIVE SUSPENSIONS

Sedimentation is a simple yet powerful tool to study
colloidal suspensions, because it allows a continuous ex-
ploration of the phase behaviour of the system without
fine-tuning of the volume fraction [22, 26]. This technique
has been used to explore phase diagrams and equation of
state for several types of suspensions [27–32]. Sedimenta-
tion allows us to extend previous work on active colloids
performed in the dilute regime [8] and at low density [12],
to a much broader range of densities.

Experimentally, we study colloidal particles which are
self-propelled through phoretic e↵ects. We use gold
Janus microspheres with one half covered with platinum.
When immersed in a hydrogen peroxide bath the colloids
convert chemical energy into active motion. The average
radius obtained from scanning electron microscopy mea-
surements (SEM) is R = 1.1± 0.1 µm, but image analy-
sis at large density indicates an e↵ective radius between
1.34 and 1.44 µm, decreasing slightly with activity. In
the following, we assume that R is constant, with the
value given by the SEM measurements. Due to gravity,
the Janus colloids (mass density ⇢ ⇠ 11 g.cm�3) form
a bidimensional monolayer at the bottom of the obser-
vation chamber. We tilt the system by a small angle
✓ ⇠ 10�3 rad along the z-direction as shown in the inset
of Fig. 1a, so that the gravity field felt by the parti-
cles is reduced to g sin ✓. To study the e↵ect of activity
on the sedimentation, we measure the density profiles in
the z-direction for various mass concentrations in H2O2

from 0 to 10�2 w/w. This controls the level of particle
self-propulsion, which can be quantified by the transla-
tional Péclet number Pe, defined as: Pe = Rv

D0
, where

D0 is the di↵usion coe�cient of the colloids in the ab-
sence of activity, and v is the average velocity of free
microswimmers (see Methods). Notice that the present
active particle system was previously studied only at a
single density [12], and the experimental setup to study
its sedimentation profiles di↵ers from earlier experimen-
tal studies [8].

We also conduct simulations of sedimentation profiles
within a simple model of self-propelled hard disks [19, 33],
see Fig. 1b. The model is simpler than the experiments
on two key aspects. Firstly, it uses a purely hard core
repulsion between particles. This is a reasonable choice,
because the pair interaction between the Janus colloids
has not been characterized in detail, and this avoids the
introduction of multiple control parameters. Secondly,
the phoretic mechanism behind self-propulsion is not sim-
ulated, and particle activity is implemented directly into

a

b

G

z θ
z

FIG. 1. Imaging sedimentation profiles (color online). Snap-
shots of (a) phoretic gold-platinum Janus colloids and (b)
self-propelled hard disks under gravity for activity increasing
from left to right. (a) Four di↵erent activities are shown, cor-
responding to Péclet numbers Pe = 0 (passive case), 8, 14,
and 20 (from left to right). Inset shows a schematic view of
the experimental setup. The scale bar is 20 µm, (b) Simula-
tion snapshots for persistence times ⌧ = 0 (passive disks), 1,
10, 100 (from left to right).

Monte-Carlo equations of motion [19], which generalize
the algorithm used for Brownian hard disks to introduce
self-propulsion. In the model, the activity is controlled
by a single parameter, the persistence time ⌧ (equivalent
to a rotational Péclet number) determining the crossover
time between ballistic and di↵usive regimes in the dilute
limit [19]. The intensity of the gravity force G controls
the sedimentation process (see Methods). The phase be-
havior and dynamics of the model without gravity has
been studied carefully before [19, 33], but the equation
of state has never been analysed.

In Fig. 1, we show the sedimentation images for both
the experimental system and the numerical model, for
four di↵erent activity levels. The relevance of sedimen-
tation studies is immediately clear, as the system contin-
uously evolves from a very dilute suspension at the top,
to very dense configurations at the bottom. Therefore, a
single experiment explores at once a broad range of den-
sities for a given level of activity. Despite its simplicity,
the numerical model reproduces qualitatively the various

Ginot et al. Phys Rev X 5, 011004 (2015)



1129/10/2021

Measuring pressure in the vibrated grains : the barometer

Torque free membrane

Mechanical Equilibrium

Geometry

Laplace Law

2

can thus be measured. For isotropic disks, the pressure is
independent of the chain length and follows the equilib-
rium equation of state for hard disks. For self propelled
disks, the pressure depends on the chain length, empha-
sizing that mechanical pressure is not a state variable
for the present system. Still, for a given chain length,
the mechanical equilibrium between isotropic and self
propelled disks, obtained when the membrane is flat,
coincides with that prescribed by the packing fractions.
Finally, when introducing self propelled disks on both
sides, we observe an instability of the membrane akin
to the one predicted theoretically for torque free active
articles against a flexible wall [? ], together with its conse-
quences on the shape of a filament immersed in an active
bath [Fig.1]. We further demonstrate that the amplitude
of the instability decreases with the pressure di↵erence
between the two sides of the membrane.

The experimental system, made of vibrated disks with a
built-in polar asymmetry, which enables them to move
coherently, has been described in details previously [?
]. The polar particles are micro-machined copper-
beryllium discs (diameter d = 4 mm, area a = ⇡d

2/4)
with an o↵-center tip and a glued rubber skate located
at diametrically opposite positions (total height h = 2
mm). These two ”legs”, with di↵erent mechanical re-
sponse, endow the particles with a polar axis. Under
proper vibration, the disks perform a persistent random
walk, the persistence length of which is set by the vibra-
tion parameters. Here we use a sinusoidal vibration of
frequency f = 95 Hz and amplitude A with relative accel-
eration to gravity � = 2⇡A f

2/g = 2.4. We also use plain
rotationally-invariant disks (same metal, diameter, and
height), hereafter called the “isotropic” discs. A chain,
the type of chain used to attach bathtub drain stoppers,
is formed of J + 1 beads of diameter 2.33 mm, connected
by J rigid links of length ` = 3.15 mm. The joint between
a bead and a link is torque free, but the angle between
successive links can not exceed ⌘max = ⇡/9 radians. The
chain is fixed at its ends, dividing the arena diametri-
cally in two regions of equal areas. The total length of
the chain Lmax = J` mm is longer than the end-to-end
distance of the chain, the arena diameter D = 251.1 mm.
The instantaneous position of the beads along the chain
is captured using a standard CCD camera at a frame
rate of 1 Hz during 60 min, after an equilibration time
of 30 min. In the following, the unit of time is set to be
the inverse frame rate and the unit length is the particle
diameter.

In the absence of particles, the chain vibrates and ex-
plores all configurations compatible with the constraint
on the angles between successive links ⌘ j  ⌘max. The
positions of the beads, averaged over 3600 samples, sep-
arated by 5700 vibration cycles, define an average chain

which aligns along the diameter of the arena. As soon
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Figure 2 – Picture of the arena.

way. First it detects every circular objets of a given diameter on the image. The difficulty is to choose
the right image contrast and diameter of the detection in order to detect all the beads and only the
beads. In practice, for all the beads detected, the programme detects also other objects which are for
instance bright reflexion on the disks and the more disks there are the harder the detection is. To sort
the beads from the other detected objects and to rebuild the whole chain I have stuck white triangles
on each ends of the chain and sort all detected objects by its increasing abscisse. The programme starts
to detect the two triangles, choose the biggest which correspond to the left side of the chain (smallest
abscisse) : it becomes the first bead. Then the programme takes the next object, if the distance and
the angle between it and the previous bead fit with the characteristics of the chain this object becomes
the next bead and so one until the last bead given by the right triangle. Sometimes one bead is missing
but the programme is able to look for the next bead. Once the whole chain and the area boundary are
detected, we compute the area defined by the chain as well as the packing fraction, and we average
these quantities over all the images.
I did experiments for both SPPs and ISO and for different number of these particles on each side of
the chain. We will call N1 the number of particle on the left side and N2 the number on the right side.

For the ISOs I did experiments for :
•N1 varying from 0 to 1000 by step of 100, N2 = 0 fixed
•N1=1000 fixed, N2 = [0, 100, 350, 600, 800, 1000]
•N1=800 fixed, N2 = [0, 100, 350, 600, 800]
•N1=600 fixed, N2 = [0, 100, 350, 600]
•N1=350 fixed, N2 = [0, 100, 350]
•N1=100 fixed, N2 = [0, 100]

For the SPPs I did experiments for :
•N1=[0, 10, 25, 50, 75, 100, 150, 200, 300, 400], N2 = 0 fixed
•N1 = N2=[0, 100, 200, 300, 400]

I also did experiments with a number N1 of ISO and N2 of SPP for [N1 ; N2]=[50 ; 400] and [150 ; 627].

2.3 Difficulties

In principle producing some kind of self propulsion using vibrating man-made objects allows for
incomparably more control than with, say, biological organisms. Nevertheless, in order to be free from
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FIG. 2: A membrane as a barometer : (a) Several instanta-
neous configurations of a chain separating the system into two
regions: (1) occupied by N1 = 640 isotropic particles, and (2)
left empty (J = 91). The red curve is the average chain position,
which takes the form of an arc-circle. (b) Sketch of the sim-
plified chain model: rigid links are connected by torque free
joints. The angle between two successive links is bounded to
⌘max (c) E↵ective chain tensionF as a function of the normalized
averaged length hLi/D for J = 81, 91, 101, 111.

as a few hundred particles, wether isotropic or polar, are
introduced on one side of the chain, the above symme-
try is broken. Quite remarkably, apart from a boundary
layer of one or two links at the extremities of the chain,
the shape of the average chain has a constant radius of
curvature R and the angles between the successive links
of the average chain are all smaller than ⌘max [Fig. 2].
Hence the links do not support any torque; the tension
F in the chain is constant; and the mechanical pressure P

is homogeneous. Mechanical equilibrium then leads to:

P ⇥D = 2F sin
✓ hLi

2R

◆
, (1)

where hLi is the average chain length. Together with the
purely geometric relation:

D

2R
= sin

✓ hLi
2R

◆
, (2)

one finds that the the mechanical pressure simply obeys
the Laplace laws, P = F/R.

To proceed further, we compute the tension in the chain
assuming that it obeys an equilibrium dynamics and
evaluate its partition function using Monte Carlo sim-
ulations. The angles ⌘ j are generated randomly within
the range

⇥�⌘max, ⌘max

⇤
, from a binomial distribution with

bins �⌘ = 10�3 rad. The distribution ⇢ (L, J) is then ob-

P ⇥D = 2Fsin(✓)

D

2R
= sin(✓)F

R
2q

D

< L >

F

the mechanical law of the membraneF (hLi)Need for
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can thus be measured. For isotropic disks, the pressure is
independent of the chain length and follows the equilib-
rium equation of state for hard disks. For self propelled
disks, the pressure depends on the chain length, empha-
sizing that mechanical pressure is not a state variable
for the present system. Still, for a given chain length,
the mechanical equilibrium between isotropic and self
propelled disks, obtained when the membrane is flat,
coincides with that prescribed by the packing fractions.
Finally, when introducing self propelled disks on both
sides, we observe an instability of the membrane akin
to the one predicted theoretically for torque free active
articles against a flexible wall [? ], together with its conse-
quences on the shape of a filament immersed in an active
bath [Fig.1]. We further demonstrate that the amplitude
of the instability decreases with the pressure di↵erence
between the two sides of the membrane.

The experimental system, made of vibrated disks with a
built-in polar asymmetry, which enables them to move
coherently, has been described in details previously [?
]. The polar particles are micro-machined copper-
beryllium discs (diameter d = 4 mm, area a = ⇡d

2/4)
with an o↵-center tip and a glued rubber skate located
at diametrically opposite positions (total height h = 2
mm). These two ”legs”, with di↵erent mechanical re-
sponse, endow the particles with a polar axis. Under
proper vibration, the disks perform a persistent random
walk, the persistence length of which is set by the vibra-
tion parameters. Here we use a sinusoidal vibration of
frequency f = 95 Hz and amplitude A with relative accel-
eration to gravity � = 2⇡A f

2/g = 2.4. We also use plain
rotationally-invariant disks (same metal, diameter, and
height), hereafter called the “isotropic” discs. A chain,
the type of chain used to attach bathtub drain stoppers,
is formed of J + 1 beads of diameter 2.33 mm, connected
by J rigid links of length ` = 3.15 mm. The joint between
a bead and a link is torque free, but the angle between
successive links can not exceed ⌘max = ⇡/9 radians. The
chain is fixed at its ends, dividing the arena diametri-
cally in two regions of equal areas. The total length of
the chain Lmax = J` mm is longer than the end-to-end
distance of the chain, the arena diameter D = 251.1 mm.
The instantaneous position of the beads along the chain
is captured using a standard CCD camera at a frame
rate of 1 Hz during 60 min, after an equilibration time
of 30 min. In the following, the unit of time is set to be
the inverse frame rate and the unit length is the particle
diameter.

In the absence of particles, the chain vibrates and ex-
plores all configurations compatible with the constraint
on the angles between successive links ⌘ j  ⌘max. The
positions of the beads, averaged over 3600 samples, sep-
arated by 5700 vibration cycles, define an average chain

which aligns along the diameter of the arena. As soon
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Figure 2 – Picture of the arena.

way. First it detects every circular objets of a given diameter on the image. The difficulty is to choose
the right image contrast and diameter of the detection in order to detect all the beads and only the
beads. In practice, for all the beads detected, the programme detects also other objects which are for
instance bright reflexion on the disks and the more disks there are the harder the detection is. To sort
the beads from the other detected objects and to rebuild the whole chain I have stuck white triangles
on each ends of the chain and sort all detected objects by its increasing abscisse. The programme starts
to detect the two triangles, choose the biggest which correspond to the left side of the chain (smallest
abscisse) : it becomes the first bead. Then the programme takes the next object, if the distance and
the angle between it and the previous bead fit with the characteristics of the chain this object becomes
the next bead and so one until the last bead given by the right triangle. Sometimes one bead is missing
but the programme is able to look for the next bead. Once the whole chain and the area boundary are
detected, we compute the area defined by the chain as well as the packing fraction, and we average
these quantities over all the images.
I did experiments for both SPPs and ISO and for different number of these particles on each side of
the chain. We will call N1 the number of particle on the left side and N2 the number on the right side.

For the ISOs I did experiments for :
•N1 varying from 0 to 1000 by step of 100, N2 = 0 fixed
•N1=1000 fixed, N2 = [0, 100, 350, 600, 800, 1000]
•N1=800 fixed, N2 = [0, 100, 350, 600, 800]
•N1=600 fixed, N2 = [0, 100, 350, 600]
•N1=350 fixed, N2 = [0, 100, 350]
•N1=100 fixed, N2 = [0, 100]

For the SPPs I did experiments for :
•N1=[0, 10, 25, 50, 75, 100, 150, 200, 300, 400], N2 = 0 fixed
•N1 = N2=[0, 100, 200, 300, 400]

I also did experiments with a number N1 of ISO and N2 of SPP for [N1 ; N2]=[50 ; 400] and [150 ; 627].

2.3 Difficulties

In principle producing some kind of self propulsion using vibrating man-made objects allows for
incomparably more control than with, say, biological organisms. Nevertheless, in order to be free from
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FIG. 2: A membrane as a barometer : (a) Several instanta-
neous configurations of a chain separating the system into two
regions: (1) occupied by N1 = 640 isotropic particles, and (2)
left empty (J = 91). The red curve is the average chain position,
which takes the form of an arc-circle. (b) Sketch of the sim-
plified chain model: rigid links are connected by torque free
joints. The angle between two successive links is bounded to
⌘max (c) E↵ective chain tensionF as a function of the normalized
averaged length hLi/D for J = 81, 91, 101, 111.

as a few hundred particles, wether isotropic or polar, are
introduced on one side of the chain, the above symme-
try is broken. Quite remarkably, apart from a boundary
layer of one or two links at the extremities of the chain,
the shape of the average chain has a constant radius of
curvature R and the angles between the successive links
of the average chain are all smaller than ⌘max [Fig. 2].
Hence the links do not support any torque; the tension
F in the chain is constant; and the mechanical pressure P

is homogeneous. Mechanical equilibrium then leads to:

P ⇥D = 2F sin
✓ hLi

2R

◆
, (1)

where hLi is the average chain length. Together with the
purely geometric relation:

D

2R
= sin

✓ hLi
2R

◆
, (2)

one finds that the the mechanical pressure simply obeys
the Laplace laws, P = F/R.

To proceed further, we compute the tension in the chain
assuming that it obeys an equilibrium dynamics and
evaluate its partition function using Monte Carlo sim-
ulations. The angles ⌘ j are generated randomly within
the range

⇥�⌘max, ⌘max

⇤
, from a binomial distribution with

bins �⌘ = 10�3 rad. The distribution ⇢ (L, J) is then ob-
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can thus be measured. For isotropic disks, the pressure is
independent of the chain length and follows the equilib-
rium equation of state for hard disks. For self propelled
disks, the pressure depends on the chain length, empha-
sizing that mechanical pressure is not a state variable
for the present system. Still, for a given chain length,
the mechanical equilibrium between isotropic and self
propelled disks, obtained when the membrane is flat,
coincides with that prescribed by the packing fractions.
Finally, when introducing self propelled disks on both
sides, we observe an instability of the membrane akin
to the one predicted theoretically for torque free active
articles against a flexible wall [? ], together with its conse-
quences on the shape of a filament immersed in an active
bath [Fig.1]. We further demonstrate that the amplitude
of the instability decreases with the pressure di↵erence
between the two sides of the membrane.

The experimental system, made of vibrated disks with a
built-in polar asymmetry, which enables them to move
coherently, has been described in details previously [?
]. The polar particles are micro-machined copper-
beryllium discs (diameter d = 4 mm, area a = ⇡d

2/4)
with an o↵-center tip and a glued rubber skate located
at diametrically opposite positions (total height h = 2
mm). These two ”legs”, with di↵erent mechanical re-
sponse, endow the particles with a polar axis. Under
proper vibration, the disks perform a persistent random
walk, the persistence length of which is set by the vibra-
tion parameters. Here we use a sinusoidal vibration of
frequency f = 95 Hz and amplitude A with relative accel-
eration to gravity � = 2⇡A f

2/g = 2.4. We also use plain
rotationally-invariant disks (same metal, diameter, and
height), hereafter called the “isotropic” discs. A chain,
the type of chain used to attach bathtub drain stoppers,
is formed of J + 1 beads of diameter 2.33 mm, connected
by J rigid links of length ` = 3.15 mm. The joint between
a bead and a link is torque free, but the angle between
successive links can not exceed ⌘max = ⇡/9 radians. The
chain is fixed at its ends, dividing the arena diametri-
cally in two regions of equal areas. The total length of
the chain Lmax = J` mm is longer than the end-to-end
distance of the chain, the arena diameter D = 251.1 mm.
The instantaneous position of the beads along the chain
is captured using a standard CCD camera at a frame
rate of 1 Hz during 60 min, after an equilibration time
of 30 min. In the following, the unit of time is set to be
the inverse frame rate and the unit length is the particle
diameter.

In the absence of particles, the chain vibrates and ex-
plores all configurations compatible with the constraint
on the angles between successive links ⌘ j  ⌘max. The
positions of the beads, averaged over 3600 samples, sep-
arated by 5700 vibration cycles, define an average chain

which aligns along the diameter of the arena. As soon
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Figure 2 – Picture of the arena.

way. First it detects every circular objets of a given diameter on the image. The difficulty is to choose
the right image contrast and diameter of the detection in order to detect all the beads and only the
beads. In practice, for all the beads detected, the programme detects also other objects which are for
instance bright reflexion on the disks and the more disks there are the harder the detection is. To sort
the beads from the other detected objects and to rebuild the whole chain I have stuck white triangles
on each ends of the chain and sort all detected objects by its increasing abscisse. The programme starts
to detect the two triangles, choose the biggest which correspond to the left side of the chain (smallest
abscisse) : it becomes the first bead. Then the programme takes the next object, if the distance and
the angle between it and the previous bead fit with the characteristics of the chain this object becomes
the next bead and so one until the last bead given by the right triangle. Sometimes one bead is missing
but the programme is able to look for the next bead. Once the whole chain and the area boundary are
detected, we compute the area defined by the chain as well as the packing fraction, and we average
these quantities over all the images.
I did experiments for both SPPs and ISO and for different number of these particles on each side of
the chain. We will call N1 the number of particle on the left side and N2 the number on the right side.

For the ISOs I did experiments for :
•N1 varying from 0 to 1000 by step of 100, N2 = 0 fixed
•N1=1000 fixed, N2 = [0, 100, 350, 600, 800, 1000]
•N1=800 fixed, N2 = [0, 100, 350, 600, 800]
•N1=600 fixed, N2 = [0, 100, 350, 600]
•N1=350 fixed, N2 = [0, 100, 350]
•N1=100 fixed, N2 = [0, 100]

For the SPPs I did experiments for :
•N1=[0, 10, 25, 50, 75, 100, 150, 200, 300, 400], N2 = 0 fixed
•N1 = N2=[0, 100, 200, 300, 400]

I also did experiments with a number N1 of ISO and N2 of SPP for [N1 ; N2]=[50 ; 400] and [150 ; 627].

2.3 Difficulties

In principle producing some kind of self propulsion using vibrating man-made objects allows for
incomparably more control than with, say, biological organisms. Nevertheless, in order to be free from
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FIG. 2: A membrane as a barometer : (a) Several instanta-
neous configurations of a chain separating the system into two
regions: (1) occupied by N1 = 640 isotropic particles, and (2)
left empty (J = 91). The red curve is the average chain position,
which takes the form of an arc-circle. (b) Sketch of the sim-
plified chain model: rigid links are connected by torque free
joints. The angle between two successive links is bounded to
⌘max (c) E↵ective chain tensionF as a function of the normalized
averaged length hLi/D for J = 81, 91, 101, 111.

as a few hundred particles, wether isotropic or polar, are
introduced on one side of the chain, the above symme-
try is broken. Quite remarkably, apart from a boundary
layer of one or two links at the extremities of the chain,
the shape of the average chain has a constant radius of
curvature R and the angles between the successive links
of the average chain are all smaller than ⌘max [Fig. 2].
Hence the links do not support any torque; the tension
F in the chain is constant; and the mechanical pressure P

is homogeneous. Mechanical equilibrium then leads to:

P ⇥D = 2F sin
✓ hLi

2R

◆
, (1)

where hLi is the average chain length. Together with the
purely geometric relation:

D

2R
= sin

✓ hLi
2R

◆
, (2)

one finds that the the mechanical pressure simply obeys
the Laplace laws, P = F/R.

To proceed further, we compute the tension in the chain
assuming that it obeys an equilibrium dynamics and
evaluate its partition function using Monte Carlo sim-
ulations. The angles ⌘ j are generated randomly within
the range

⇥�⌘max, ⌘max

⇤
, from a binomial distribution with

bins �⌘ = 10�3 rad. The distribution ⇢ (L, J) is then ob-

3

tained from 5.107 configurations using :

L = `

8>>><>>>:

2
6666664

JX

j=1

cos
⇣
✓ j

⌘
3
7777775

2

+

2
6666664

JX

j=1

sin
⇣
✓ j

⌘
3
7777775

29>>>=>>>;

1/2

, (3)

where ✓ j =

jX

i=1

⌘i, for j = 1, . . . , J (see Fig. 2). Then, con-

sidering a Boltzmann distribution for a chain of length L

submitted to a tension F, the partition function Z is given
by:

Z
�
�`F, J

�

Z0 (J)
=

Z 1

�1
⇢ (L, J) exp

�
�LF
�

dL , (4)

where Z0 =
�
2⌘max

�J is the total number of configurations
in the limit �chain ! 0. Finally, the e↵ective length of the
chain hLi reads :

hLi(F, J) = 1
�

"
@
@F

ln (Z)
#

J

. (5)

Figure 2 displays the result of the above analysis in the

form �`F = F
✓ hLi

D

◆
. We are now in position, measur-

ing the radius of curvature R and the length hLi of the
average chain to access the dimensionless mechanical
pressure:

P
⇤ = �Pa =

a

`R
F
✓ hLi

D

◆
, (6)

The experimental results obtained for two chain lengths
J = 91 and J = 111 are summarized in Fig. 3. For both
the isotropic and the polar disks, the chain indeed takes
the shape of an arc-circle when the number of particles
is large enough, say larger than a few hundreds. For
less particles, we observe some distorsion, which in the
case of the isotropic disks can reasonably be attributed to
statistical fluctuations. In the case of the polar particles,
they are more significant and we shall come back to it
below. Note that also in the absence of particles there
is a small deviation from the perfect straight line, which
we attribute to some experimental imperfection that we
could not resolve. For the moment, we assume a perfect
arc circle shape, extract its curvature radius and compute
the pressure using eq. (6). In the case of the isotropic
disks, P

⇤(�) does not depend on the chain length and
is well described by the Carnahan-Starling equilibrium
equation of state for hard discs up to a multiplicative
constant K :

P
⇤
iso
= K �

1 + 1
8�

2

h
1 � �

i2 , (7)

This non trivial result demonstrates that both the
isotropic disks and the chain can be described within
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FIG. 3: Pressure : Average chain configurations
when disks are confined to a single region, with (a)
N1 = [0, 100, 200, ...1000] isotropic disks and (b) N1 =
[0, 10, 25, 50, 75, 100, 150, 200, 300, 400] polar disks. (c) Dimen-
sionless pressure P

⇤ as a function of the packing fraction �, for
the isotropic (blue) and polar (red) disks, for two chain length
J = 91 (�) and J = 111 (⇧); the plain curve is the equilibrium
equation of state for hard disks (eq.(7)); the dashed curves are
obtained from a 2nd order virial expansion. (d) Relation be-
tween the surface fractions �iso of isotropic disks and �spp of
self-propelled disks, such that mechanical equilibrium takes
place (inset). (•): data with Nspp = 50, 150, 300; plain curve as
prescribed by the mechanical equilibrium of pressures on both
side (J = 91).

an equilibrium framework. The multiplicative constant
K = 0.17 can be interpreted as the ratio of the e↵ective
temperatures of the chain to that of the disks, which have
no reason to be equal. In the case of the polar disks, P

⇤(�)
does depend on the chain length, and therefore is not a
state variable. We note that for both chain length, the cur-
vature is reversed as compared to the isotropic disks indi-
cating a negative value for the first coe�cient of the Virial
expansion P

⇤
spp = K

0�
⇣
1 + b1�

⌘
+O

⇣
�3
⌘
, where K

0 = 1.05
and b1 = (�2.529, xxxx) for J = (91, 111). A negative value
for the first Virial coe�cient has also been obtained in
the case of self-propelled phoretic Janus colloids [? ].
It suggest that self propelled polar particles give rise to
an e↵ective attraction, which physically result from their
persistent motion. We complete this part of the study by
equilibrating the mechanical pressure induced by Nspp

self propelled disks on one side of the chain by adding
Niso isotropic disks on the other side. The experiment
is repeated for Nspp = 50, 150, 300. A snapshot of the
mechanically equilibrated state is provided as inset of
fig. 3(d), with Nspp = 150 and Niso = 640. As demon-
strated from the plain curve in fig. 3(d), the number
of isotropic disks required to equilibrate the mechani-
cal pressure imposed by the self propelled disks is pre-
scribed by solving P

⇤
iso

(�iso) = P
⇤
spp(�spp). Although the

thermodynamic pressure does not exist for the present

Monte Carlo sampling of Z

�`F = F
✓

hLi
Lmax

◆

hLi=Lmax

0.7 0.75 0.8 0.85 0.9 0.95 1

log [F ]

-3

-2

-1

0

(c)

⌘max = ⇡/8



13

Mechanical pressure for Isotropic vs. Polar Disks
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u Change the chain same total length              , but more units J = 147 

Equilibration for two different walls…

29/10/2021

Lmax
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The mechanical pressure is not a state variable
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The mechanical pressure is not a state variable

u Why ? the vibrated disk are a priori very similar to ABP, no EOS

u The reason is : active torque

29/10/2021

n

v

mv̇ = F0n̂� �tv + Fext

J !̇ = ��r! + �ext +
p
2D⇠n?

�a = ⇣(n̂⇥ v)⇥ n̂

Self-alignment
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Outline: from active liquids to active solids

u Active fluids : a brief overview with a focus on collective motion
mechanical pressure is not a state variable
liquid-gas phase separation takes place in purely repulsive systems
collective motion

u Active solids :
spontaneous flows can take place in crystalline structure
selective & collective actuation emerges in linear elastic systems

29/10/2021
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Transition to collective motion in Point Particles models

29/10/2021

Vicseck model

u Over damped, self propelled Point Particles
Moving at velocity V0 n
Alignment with neighbors (within some range) 
+ Noise

Þ transition to collective motion is discontinuous
Þ fast domain growth leading to high-density/high order 

solitary bands/sheets (2D/3D)
Þ In the polar state: giant density fluctuations

(splay modes)
PRE, 77(4), 6113 2008.
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FIG. 7: (color online) Hysteresis in three spatial dimensions
with vectorial noise. (a) order parameter vs noise strength
along the hysteresis loop observed with a ramp rate of 2 ·
10−6 per time step (ρ = 1/2, v0 = 0.5, L = 32). Empty
circles mark the path along the adiabatic increase of noise
amplitude, full triangles for adiabatic decrease. (b) nucleation
times from the disordered phase to the ordered phase (τ↑, left
curves) and vice-versa (τ↓, right curves) for two system sizes
(other parameters as in (a)). Each point is averaged over 1000
realizations.

C. Hysteresis

One of the classical hallmarks of discontinuous phase
transitions is the presence, near the transition, of the
hysteresis phenomenon: ramping the control parameter
at a fixed (slow) rate up and down through the transi-
tion point, a hysteresis loop is formed, inside which phase
coexistence is manifest (see Fig. 7a for the d = 3 case
with vectorial noise). The size of such hysteresis loops
varies with the ramping rate. An intrinsic way of as-
sessing phase coexistence and hysteresis is to study sys-
tematically the nucleation time τ↑ needed to jump from
the disordered phase to the ordered one, as well as τ↓
the decay time after which the ordered phase falls into
the disordered one. Fig. 7b shows, in three space dimen-
sions, how these nucleation and decay vary with η at two
different sizes. A sharp divergence is observed, corre-
sponding to the transition point. At a given time value
τ , one can read, from the distance between the “up” and
the “down” curve, the average size of hysteresis loops for
ramping rates of the order of 1/τ .

D. Phase diagram

The above detailed FSS study would be very tedious to
realize when varying systematically the main parameters
η, ρ, and v0, as well as the nature of the noise and the
presence or not of repulsive interactions. From now on,
to characterize the discontinuous nature of the transition,
we rely mainly on the presence, at large-enough system
sizes L, of a minimum in the variation of the Binder
cumulant G with η (all other parameters being fixed).
We call L∗ the crossover size marking the emergence of
a minimum of G(η).
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FIG. 8: (color online) Asymptotic phase diagrams for the
transition to collective motion. (a) Two space dimensions:
threshold amplitude ηt for angular noise as a function of
density ρ at v0 = 0.5. Inset: Log-log plot to compare the
low density behavior with the mean field predicted behavior
ηt ∼ √

ρ (dashed red line). (b) As in panel (a), buth with
vectorial noise dynamics. (c) Noise-density phase diagram in
three dimensions for vectorial noise dynamics at fixed veloc-
ity v0 = 0.5. In the log-log inset the transition line can be
compared with the predicted behavior ηt ∼ ρ1/3 (dashed red
line). (d) Two space dimensions: threshold amplitude ηt for
angular noise as a function of particle velocity v0 at fixed den-
sity ρ = 1/2 (black circles) and ρ = 1/8 (red triangles). The
horizontal dashed line marks the noise amplitude considered
in Ref. [39] (see Section III F).

We are now in the position to sketch the phase diagram
in the (η, ρ, v0) parameter space. The numerical protocol
used is, at given parameter values, to run a large-enough
system so that the discontinuous character of the transi-
tion is seen (i.e. L > L∗). For larger sizes, the location of
the transition point typically varies very little, so that for
most practical purposes, locating the (asymptotic) tran-
sition point from systems sizes around L∗ is satisfactory.

The results presented below are in agreement with sim-
ple mean-field-like arguments in the diluted limit: in the
small-ρ regime, one typically expects that the lower the
density, the lower the transitional noise amplitude ηt.
Indeed, for ∆t v0 of the order of or not much smaller
than the interaction range r0 and in the low-density limit
ρ ! 1/r0

d, the system can be seen as a dilute gas in which
particles interact by short range ordering forces only. In
this regime, the persistence length of an isolated parti-
cle (i.e. the distance travelled before its velocity loses
correlation with its initial direction of motion) varies like

1/2Effective models
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Experiment I :Vibrated grains
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2 Set up and protocole

In this section I will present the set up and the acquisition methods I used to mesure and compute
the pressure for passive and active hard disks.

2.1 Set up

To shake the particles we use an electromagnetic servo-controlled shaker which drives a glass plate
on which the particles lay. The plate vibrates at a frequency f = 95Hz with an acceleration � = 3, 0g.
On top of the glass plate an other plate in plexiglass confines the particles in 2 dimensions. We laterally
confined the particles in a flower-shaped arena of internal diameter D = 25cm. The flower shape avoid
the stagnation of particule at the boundaries by "reinjecting" them into the bulk. There are two kind
of particles : the isotropic one (ISO) and the anisotropic one (SPP). Both have a cylindrical head in
a copper-beryllium with a diameter of 4mm. The ISOs have a cylindrical foot and the SPPs have an
anisotropic one. It turns that when the plate vibrates the ISOs undergo a random walk while the SPPs
undergo a persistant random walk with a given persistance length due to the asymmetry of there foots.

2mm 4mm2mm 4mm

(a) (b)

(c) (d)

Figure 1 – Passive and active disks behavior. (a) side and bottom view of an active disk with the
built-in polarity ~n. (b) side and bottom view of a passive disk. (c) Individuals trajectories of active disks
at an acceleration � = 2.7, the black and red arrows indicate ~vi and ~ni at selected times. The domaine
area is about 15x15 diameter. (d) Same for the passive disks. Julien Deseigne, Sébastien Léonard,
Olivier Dauchot and Hugues Chaté : Vibrated polar disks : spontaneous motion, binary collisions, and
collective dynamics, Soft matter, 2012, 8, 5629-5639.

To investigate the question of pressure I have fixed a chain to two diametrically opposed points of the
arena. I chose the length of the chain so that it is not completely stretched but free to fluctuate under
plate vibrations or particle collisions. The chain is made of 92 beads tied by rigid rods, the diameter
of the beads is 2mm and the length of a rod is 3mm. Two rods can freely rotate with respect to each
other until they reach a maximum angle of pi/18.

2.2 Acquisition

In this system of hard disks we are interested in two observables : the position of the chain and the
area defined by this position. To have access to these informations a camera takes images of this 2D
system at the frame rate of 1Hz and we typically take 3600 images for each experiment to have correct
averaged quantities. Before the acquisition we wait 20min to ensure that the system have reached a
stationary state. From the images taken I coded a matlab program able to detected the area boundary,
the beads of the chain and then rebuild the whole chain. The programme mainly woks in the following

5
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… collective motion and polar ordering
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Figure 1: (a) An isolated self-propelled particle converges to

its stationary state where velocity v and polarity n̂ are parallel.

(b) A single binary “scattering event” can consist of many hard-

disk elastic collisions. (c) Stable phases in the absence of noise.

Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a

discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ v̂i)⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000
or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p
N for

the isotropic state and close to unity for the polar state.
Let us first look at the case without angular noise,

D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1
as initial condition, we found that the polar state  = 1
is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,

p-2

Khanh-Dang Nguyen Thu Lam, Michael Schindler, and Olivier Dauchot

0

1

0 0.05 0.1 0.15

���

↵

x

y x

y
v

n

�(a)

(b)

(c)

Figure 1: (a) An isolated self-propelled particle converges to

its stationary state where velocity v and polarity n̂ are parallel.

(b) A single binary “scattering event” can consist of many hard-

disk elastic collisions. (c) Stable phases in the absence of noise.

Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a

discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ v̂i)⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000
or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p
N for

the isotropic state and close to unity for the polar state.
Let us first look at the case without angular noise,

D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1
as initial condition, we found that the polar state  = 1
is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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Figure 1: (a) An isolated self-propelled particle converges to

its stationary state where velocity v and polarity n̂ are parallel.

(b) A single binary “scattering event” can consist of many hard-

disk elastic collisions. (c) Stable phases in the absence of noise.

Between isotropic (h i ⇡ 0) and polar (h i = 1) phase is a

discontinuous transition.

phases in the low density limit. To do so we proceed in
three steps. (i) We perform molecular dynamics of the
model equations for purely elastic interactions, with and
without noise: In the absence of noise, the system exhibits
a strongly first order transition from the isotropic to the
collective motion phase (see Fig. 1c). Above a finite level
of noise, the transition becomes second order – a tricritical
point exists. This establishes the phase behaviour which
we will explain from theoretical considerations. (ii) We
analyze the model equations on the grounds of the Boltz-
mann equation, by making use of a recently proposed ob-
servable hp · �pi [5] which quantifies the non-conservation
of momentum due to particle interaction. The advantage
of this observable is that it allows to span the bridge from
the microscopic dynamics, in particular binary collisions
such as depicted in Fig. 1b, to macroscopic order param-
eters. From a direct numerical sampling of all possible
binary scattering events, we obtain an excellent quantita-
tive prediction of our numerical findings. (iii) We scruti-
nize the very peculiar dynamics of a collision between two
self propelled disks and explain the specific shape of the
scattering function that was obtained numerically in (ii).
We further find that recollisions are not necessary for the
observed alignment, contrary to our previous belief.

Model of self-propelled hard disks. The model consists
of N hard disks in a square box of size L⇥L, with periodic
boundary conditions. The density is ⇢ = N/L2. Particles,
being self-propelled, relax to a stationary speed v0. As
units of length and time we choose the diameter d0 of the
particles and d0/v0, respectively. A particle i has coordi-
nates ri, velocity vi, and a body axis given by the unit
vector n̂i (see Fig. 1a). Between collisions, it evolves ac-
cording to the equations

d
dtri = vi, (1a)

⌧v
d
dtvi = n̂i � vi, (1b)

⌧n
d
dt n̂i = (n̂i ⇥ v̂i)⇥ n̂i. (1c)

The competition between the self-propulsion n̂ and the vis-
cous damping �v in Eq. (1b) lets the velocity relax to n̂
on a timescale ⌧v. Similarly, in Eq. (1c), the polarity n̂ un-

dergoes an overdamped torque that orients it toward v on
a timescale ⌧n. Interactions between particles are elastic
hard-disk collisions which change v but not n̂. After such
a collision, v and n̂ are not collinear, and the particles un-
dergo curved trajectories which are either interrupted by
another collision (Fig. 1b), or the particles reach their sta-
tionary state, where v = n̂ and the trajectory is straight
at a speed v0 = 1 (Fig. 1a). The final direction of v (equal
to that of n̂) depends on the parameter

↵ = ⌧n/⌧v, (2)

which can be understood as the persistence of the po-
larity n̂. Linearizing the evolution equations around the
stationary state, one can show that the final polar an-
gle is given by the weighted average of the initial angles,
(✓n + ↵✓v)/(1 + ↵). When ↵ ⌧ 1, n̂ is practically always
directed along v.

On top of the deterministic trajectories given by the
Eqs. (1), we add some angular noise by the following pro-
cedure. Given a time step �t ! 0, we rotate vi and n̂i

by the same angle ⌘i(t), distributed normally with zero
mean and variance 2D�t, where the constant D � 0 fixes
the level of the angular noise. Noises of different particles
are statistically independent. We choose �t much smaller
than all other timescales in the dynamics. The relevant
parameter to characterize the angular noise is then D/�,
where � = 4⇢/⇡ is the characteristic scattering rate of the
system, which is proportional to the density [5].

Molecular dynamics (MD) simulations. We now es-
tablish the phase behaviour of the model for N particles.
MD simulations were performed at ⌧v = 4 with N = 1000
or N = 4000, focusing on the dilute regime ⇢ ⌧ 1 (see
below for a discussion of the effect of ⌧v). We are thus
left with two microscopic parameters, namely ↵ and D/�.
Also, the system size is chosen not too large, in order to
keep the system spatially homogeneous, which we have
checked by visual inspection. We measured the order pa-
rameter  (t) =

��P
i vi(t)

��/N , which is of order 1/
p
N for

the isotropic state and close to unity for the polar state.
Let us first look at the case without angular noise,

D/� = 0. We initialized simulations from random iso-
tropic conditions and waited for the isotropic state to even-
tually destabilize. When a stationary state was reached,
we started to average the order parameter over time, h i.
As shown in Fig. 1c, we found the isotropic state to be
stable at low values of ↵, whereas it becomes unstable
at larger values, in favour of a polar state. Between the
two phases, an abrupt discontinuous transition takes place
at ↵⇤. Quite remarkably, in the whole polar phase the dy-
namics converges to  = 1, where particles are all strictly
parallel. Further, choosing some random state with  ⇡ 1
as initial condition, we found that the polar state  = 1
is stable for all ↵ > 0, in particular also when ↵ < ↵⇤. In
Fig. 2a, we show again the (now rescaled) order parameter
in the isotropic state, this time for different densities. For
a given density, the data for different values of N collapse,
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experimental conditions, are asymptotically disordered,
but signals that asymptotically ordered regimes do ex-
ist nearby, constituting the first report of long-range ori-
entational order in colliding hard disks without explicit
alignment.

Finally, we have performed a systematic exploration of
the model varying � and the packing fraction � in square
domains of linear size L = 200 with periodic boundary
conditions (Fig. 4c). For � . 0.6, varying �, we observe
the usual phenomenology of models with (e↵ective) po-
lar alignment like the Vicsek model [7, 12, 18, 20, 24]
: immediately below the transition, the particles spon-
taneously segregate in high-density high-order “bands”
traveling in a low-density disordered sea (Fig. 4d). Fur-
ther away from the transition, these nonlinear structures
disappear, leaving a statistically-homogeneous Toner-Tu
phase with its characteristic giant number fluctuations
and long-range correlations [9–11, 25]. However, we de-
tected, for large enough packing fractions, narrow dis-
ordered channels (see Fig. 4d, 4) for small noise values
(green circles in Fig. 4c). These “inverse bands”, not
found in dilute or point-like particle models, seem to co-
exist with the Toner-Tu phase. We believe that the in-
creased frequency of collisions at large packing fractions
trigger the emergence of these inhomogeneous structures.

Interestingly, for � � 0.6 we could not observe bands
(Fig. 4c). This suggests a possible direct transition from
the disordered to the Toner-Tu phase. At this stage,
however we cannot conclude, due to numerical limita-
tions, whether this feature remains in the limit of large
system sizes and asymptotically large times: the width
of the bands increases with increasing � (cf. Fig. 4d) so
that their disappearance might just be a finite-size e↵ect.
However, the longitudinal density profile around � ⇡ 0.6
turns out to be rather flat, with an overall rather low
order (as low as h it ⇡ 0.2 for � = 0.6 and � = 1.4).
They may thus be of di↵erent nature from the Vicsek-
like, sharp, well-ordered bands found at low �, and could
cease to exist asymptotically at a packing fraction below
the rise of jamming and crystallization e↵ects.

To summarize, we have built a simple yet quantita-
tively faithful model for the dynamics of the vibrated
polar disks studied in [1, 2]. This model constitutes one
of the first in which the dynamics of the particle’s intrin-
sic polarity with respect to their velocity is taken into
account [54, 55]. An adequate description of the granular
system of vibrated discs requires to account for the po-
larity as a slow variable compared to the velocity, which
can change fast due collisions with the plate or neighbor-
ing particles. Our in silico study has shown that in the
original experiments the most ordered state reached was
in fact in the region of the transition to collective motion,
slightly on the disordered side. However, asymptotically-
ordered regimes do exist nearby. The new features of the
phase diagram, i.e. the emergence of “inverse bands” in
the low noise regimes of su�ciently dense systems and

FIG. 4. (color online) (a) PDF of the average polarization  ,
evaluated within the ROI, for the experimental system, the
model in the petal-shaped geometry and in periodic bound-
aries using two values of packing fractions: � = {0.39, 0.47}.
(b) Average polarization h it as a function of the noise frac-
tion �2=Dk/D

�=2.7
k =D?/D

�=2.7
? , shown for three boundary

sizes L 2 {50, 100, 200} and � = 0.47. Inset: h it for � = 1 as
function of system size L, and � = 0.47. (c) Sketch of packing
fraction(�)-noise(�) phase diagram: States with h it  0.5
are indicated by n, polar homogenous states with h it > 0.5
by s, and states exhibiting heterogenous patterns transver-
sal to the average moving direction (“bands”) are depicted
by l. (d) Representative snapshots for selected �-�-values
indicated by numbers in (c).

the possibility of a direct transition from disorder to a
collectively-moving Toner-Tu-like phase, deserve further
investigations. In particular, this last point, if confirmed
in the future, might reopen the debate about the possi-
bility of a continuous transition to collective motion since
the structures “responsible” for its discontinuous charac-
ter —the bands— would then not exist.

3

FIG. 2. (color online) Scatter graph ✓in � ✓out for the experi-
ment (a), and our model (b). Values of the impact parameter
b are indicated by the color bar. PDF of the duration ⌧col (c),
and the extension `col (d) of a collision.

quickly collide again. These encounters last for a finite
time and take place over some finite spatial extension.
It was found experimentally that they are well delimited
using the following criterion: an encounter starts when
two particles get closer than some threshold collision dis-
tance, i.e. |ri � rj |  dc = 1.7, and their polarities point
“inwards”, i.e. |(ri + ni) � (rj + nj)|  |ri � rj | [2].
An encounter ends either when particles are separated
by more than dc, or their polarities point “outwards”. In
the following we have applied the same criterion in our
model. Fig. 2 depicts the results of a scattering study
for the experimental setup and our model. Thousands of
binary encounters (hereafter called collisions for simplic-
ity) were recorded, and the outgoing relative angle ✓out of
the two particles plotted against their incoming relative
angle ✓in, the impact parameter b 2 [0, 1] [51] is shown as
color code (Fig. 2a,b). The model data shows a striking
agreement with the results measured in the experiments:
most collisions actually leave the polarities unchanged
(✓out ' �✓in), and a minority of them align the particles
almost perfectly (✓out ' 0). We estimated the fraction
of polar aligned events [53], finding 0.14 for the model
and 0.18 for the experiment. The model also matches
the distribution of head-on (b ⇡ 0) and glancing (b ⇡ 1)
collision events. We further determined the PDF of the
duration of collisions ⌧col, as well as that of their spatial
extension `col, given by the center of mass displacement.
The model reproduces the observed exponential distribu-
tion of ⌧col quantitatively, while it fails to reproduce the
roughly algebraic decay of `col (but nevertheless gives a
correct mean extension). To what degree this is an ac-
tual discrepancy between model and experiment remains
to be clarified. In fact, the very existence of an algebraic

FIG. 3. (color online) (a) PDF of the average polarization  ,
evaluated within the ROI, for the experimental system, the
model in the petal-shaped geometry and in periodic bound-
aries using two values of packing fractions: � = {0.39, 0.47}.
(b) Average polarization h it as a function of the noise frac-
tion �2=Dk/D

�=2.7
k =D?/D

�=2.7
? , shown for three boundary

sizes L 2 {50, 100, 200} and � = 0.47. Inset: h it for � = 1 as
function of system size L, and � = 0.47. (c) Sketch of packing
fraction(�)-noise(�) phase diagram: States with h it  0.5
are indicated by n, polar homogenous states with h it > 0.5
by s, and states exhibiting heterogenous patterns transver-
sal to the average moving direction (“bands”) are depicted
by l. (d) Representative snapshots for selected �-�-values
indicated by numbers in (c).

decay for the experimental data can be questioned due
to the small number of collisions with large extensions.

Finally, we performed simulations using the same
flower-shaped geometry, and number of particles (N =
890) as in the experiment [1, 2]. For the parameter val-
ues matching the single particle dynamics and binary
collisions (for vibration amplitude � = 2.7), we observe
fairly large, polar aligned, moving clusters [54]. How-
ever, the order parameter  (t) = 1

M(t) |
P

i2ROI
ni|, with

M(t) denoting the number of particles currently located
within the central “region of interest” (ROI) of radius
10, is typically smaller than in the experiment — even
after choosing ✏ = 0.4, a value which optimizes order in
the model (Fig. 3a). However, when comparing the cor-
responding videos, the discrepancy between model and
experiment could be related to the fact that clusters in
the model have a slightly larger tendency to move at the
border of the ROI, instead of directly crossing it. The
e↵ective packing fraction observed in the ROI is found
to be very close to that of the experiment (� ' 0.39,
whereas the nominal packing fraction is 0.47), indicating
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Experiment II : Rolling Colloids       (in coll. with D. Bartolo)
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A well controlled 2D experiment
Polar self propulsion
Interactions 
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PMMA colloids (a=2.4 µm)
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ITO-coated conducting glass slides
covered with isolating tape except
for the microfluidic channel

H = 220 µm

on a single master curve solely parameterized by the particle fraction,
w‘, away from the band: P s,tð Þ~1{w?=w s,tð Þ. As it turns out, this
relation corresponds to particle-number conservation in a system
where density and polarization waves propagate steadily at a velocity
v0 (ref. 22 and Supplementary Methods). This observation unambigu-
ously demonstrates that the band state corresponds to a genuine sta-
tionary flocking phase of colloidal active matter.

On further increasing the area fraction to more than w0 < 2 3 1022,
transient bands eventually catch up with themselves along the periodic
direction and form a homogeneous polar phase (Fig. 2d and Supp-
lementary Video 4) in which the velocity distribution condenses on a
single orientation of motion (Fig. 4a, to be contrasted with the perfectly

isotropic distribution for fractions less than wc in Fig. 1b). Conversely,
the roller positions are weakly correlated, as evidenced by the shape of
the pair-distribution function, which is similar to that found in low-
density molecular liquids (Fig. 4b). We also emphasize that the density
fluctuations are normal at all scales (Fig. 4c). This is experimental
observation of a polar-liquid phase of active matter. The existence of
a polar-liquid phase was theoretically established yet had not been
observed in any prior experiment involving active materials. Until
now, collective motion has been found to occur in the form of patterns
with marked density, orientational heterogeneities or both7,10,13,14,16.
Furthermore, in contrast with the present observations, giant density
fluctuations are considered to be a generic feature of the uniaxially
ordered states of liquids comprising self-propelled particles2,3,17. We
resolve this apparent contradiction below and quantitatively explain
our experimental observations.

From a theoretical perspective, the main advantage offered by the
rollers is that their interactions are clearly identified. We show in
Supplementary Methods how to establish the equations of motion of
Quincke rollers interacting through electrostatic and far-field hydro-
dynamic interactions. They take a compact form both for the position
ri and the orientation p̂i of the ith particle:

_ri~v0p̂i

_hi~
1
t

X

i=j

L
Lhi

Heff ri{rj,p̂i,p̂j
! "

Here p̂i makes an angle hi with the x axis, and a dot denotes a time
derivative. In dilute systems, the particle interactions do not affect their
propulsion speed, yet the electric field and flow field compete to align
the p̂i with them. This competition results in an effective potential, Heff,
for the p̂i. At leading order in a/r

Heff r,pi,pj
! "

~A rð Þp̂i.p̂jzB rð Þp̂i .̂r

zC rð Þp̂j. 2r̂r̂{Ið Þp̂j

where A(r) is a positive function and thus promotes the alignment of
the neighbouring rollers, and I is the identity matrix. ?Importantly, A is domi-
nated by a hydrodynamic interaction, which arises from a hydrodynamic-
rotlet singularity screened over distances of the order of the chamber
height23. The function B(r) is also short ranged and accounts for a dipolar
repulsion. Conversely, C(r) is long ranged and decays algebraically as r22
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Figure 2 | Transition to directed collective motion. a, Dark-field pictures of a
roller population that spontaneously forms a macroscopic band propagating
along the racetrack. E0/EQ 5 1.39, w0 5 1022. Scale bar, 5 mm. b–d Close-up
views. The arrows correspond to the roller displacement between two
subsequent video frames (180 frames s21). b, Isotropic gas. w0 5 6 3 1024.

c, Propagating band. w0 5 1022. d, Homogeneous polar liquid.
w0 5 1.8 3 1021. Scale bar, 500mm. e, Modulus of the average polarization, P0,
plotted versus the area fraction, w0. Collective motion occurs as w0 exceeds
wc 5 3 3 1023. wc is independent of E0. Error bars, 1 s.d.
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Figure 1 | Single-roller dynamics. a, Sketch of the Quincke rotation and of the
self-propulsion mechanisms of a colloidal roller characterized by its electric
polarization, P, and superposition of ten successive snapshots of colloidal
rollers. Time interval, 5.6 ms; scale bar, 50mm. b, Probability distribution of the
velocity vector (v | | , vH) for isolated rollers: v | | corresponds to the projection of
the velocity on the direction tangent to the racetrack (Fig. 2); vH is normal to
v | | . The probability distribution involves more than 1.4 3 105 measurements of
instantaneous speed. c, Roller velocity, v0, plotted versus the field amplitude, E0.
Inset, v2

0 versus E2
0. The black dots represent the maximum of the probability

distribution. Error bars, 1 s.d.
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on a single master curve solely parameterized by the particle fraction,
w‘, away from the band: P s,tð Þ~1{w?=w s,tð Þ. As it turns out, this
relation corresponds to particle-number conservation in a system
where density and polarization waves propagate steadily at a velocity
v0 (ref. 22 and Supplementary Methods). This observation unambigu-
ously demonstrates that the band state corresponds to a genuine sta-
tionary flocking phase of colloidal active matter.

On further increasing the area fraction to more than w0 < 2 3 1022,
transient bands eventually catch up with themselves along the periodic
direction and form a homogeneous polar phase (Fig. 2d and Supp-
lementary Video 4) in which the velocity distribution condenses on a
single orientation of motion (Fig. 4a, to be contrasted with the perfectly

isotropic distribution for fractions less than wc in Fig. 1b). Conversely,
the roller positions are weakly correlated, as evidenced by the shape of
the pair-distribution function, which is similar to that found in low-
density molecular liquids (Fig. 4b). We also emphasize that the density
fluctuations are normal at all scales (Fig. 4c). This is experimental
observation of a polar-liquid phase of active matter. The existence of
a polar-liquid phase was theoretically established yet had not been
observed in any prior experiment involving active materials. Until
now, collective motion has been found to occur in the form of patterns
with marked density, orientational heterogeneities or both7,10,13,14,16.
Furthermore, in contrast with the present observations, giant density
fluctuations are considered to be a generic feature of the uniaxially
ordered states of liquids comprising self-propelled particles2,3,17. We
resolve this apparent contradiction below and quantitatively explain
our experimental observations.

From a theoretical perspective, the main advantage offered by the
rollers is that their interactions are clearly identified. We show in
Supplementary Methods how to establish the equations of motion of
Quincke rollers interacting through electrostatic and far-field hydro-
dynamic interactions. They take a compact form both for the position
ri and the orientation p̂i of the ith particle:

_ri~v0p̂i

_hi~
1
t

X

i=j

L
Lhi

Heff ri{rj,p̂i,p̂j
! "

Here p̂i makes an angle hi with the x axis, and a dot denotes a time
derivative. In dilute systems, the particle interactions do not affect their
propulsion speed, yet the electric field and flow field compete to align
the p̂i with them. This competition results in an effective potential, Heff,
for the p̂i. At leading order in a/r

Heff r,pi,pj
! "

~A rð Þp̂i.p̂jzB rð Þp̂i .̂r

zC rð Þp̂j. 2r̂r̂{Ið Þp̂j

where A(r) is a positive function and thus promotes the alignment of
the neighbouring rollers, and I is the identity matrix. ?Importantly, A is domi-
nated by a hydrodynamic interaction, which arises from a hydrodynamic-
rotlet singularity screened over distances of the order of the chamber
height23. The function B(r) is also short ranged and accounts for a dipolar
repulsion. Conversely, C(r) is long ranged and decays algebraically as r22
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Figure 2 | Transition to directed collective motion. a, Dark-field pictures of a
roller population that spontaneously forms a macroscopic band propagating
along the racetrack. E0/EQ 5 1.39, w0 5 1022. Scale bar, 5 mm. b–d Close-up
views. The arrows correspond to the roller displacement between two
subsequent video frames (180 frames s21). b, Isotropic gas. w0 5 6 3 1024.

c, Propagating band. w0 5 1022. d, Homogeneous polar liquid.
w0 5 1.8 3 1021. Scale bar, 500mm. e, Modulus of the average polarization, P0,
plotted versus the area fraction, w0. Collective motion occurs as w0 exceeds
wc 5 3 3 1023. wc is independent of E0. Error bars, 1 s.d.
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on a single master curve solely parameterized by the particle fraction,
w‘, away from the band: P s,tð Þ~1{w?=w s,tð Þ. As it turns out, this
relation corresponds to particle-number conservation in a system
where density and polarization waves propagate steadily at a velocity
v0 (ref. 22 and Supplementary Methods). This observation unambigu-
ously demonstrates that the band state corresponds to a genuine sta-
tionary flocking phase of colloidal active matter.

On further increasing the area fraction to more than w0 < 2 3 1022,
transient bands eventually catch up with themselves along the periodic
direction and form a homogeneous polar phase (Fig. 2d and Supp-
lementary Video 4) in which the velocity distribution condenses on a
single orientation of motion (Fig. 4a, to be contrasted with the perfectly

isotropic distribution for fractions less than wc in Fig. 1b). Conversely,
the roller positions are weakly correlated, as evidenced by the shape of
the pair-distribution function, which is similar to that found in low-
density molecular liquids (Fig. 4b). We also emphasize that the density
fluctuations are normal at all scales (Fig. 4c). This is experimental
observation of a polar-liquid phase of active matter. The existence of
a polar-liquid phase was theoretically established yet had not been
observed in any prior experiment involving active materials. Until
now, collective motion has been found to occur in the form of patterns
with marked density, orientational heterogeneities or both7,10,13,14,16.
Furthermore, in contrast with the present observations, giant density
fluctuations are considered to be a generic feature of the uniaxially
ordered states of liquids comprising self-propelled particles2,3,17. We
resolve this apparent contradiction below and quantitatively explain
our experimental observations.

From a theoretical perspective, the main advantage offered by the
rollers is that their interactions are clearly identified. We show in
Supplementary Methods how to establish the equations of motion of
Quincke rollers interacting through electrostatic and far-field hydro-
dynamic interactions. They take a compact form both for the position
ri and the orientation p̂i of the ith particle:

_ri~v0p̂i

_hi~
1
t

X

i=j

L
Lhi

Heff ri{rj,p̂i,p̂j
! "

Here p̂i makes an angle hi with the x axis, and a dot denotes a time
derivative. In dilute systems, the particle interactions do not affect their
propulsion speed, yet the electric field and flow field compete to align
the p̂i with them. This competition results in an effective potential, Heff,
for the p̂i. At leading order in a/r

Heff r,pi,pj
! "

~A rð Þp̂i.p̂jzB rð Þp̂i .̂r

zC rð Þp̂j. 2r̂r̂{Ið Þp̂j

where A(r) is a positive function and thus promotes the alignment of
the neighbouring rollers, and I is the identity matrix. ?Importantly, A is domi-
nated by a hydrodynamic interaction, which arises from a hydrodynamic-
rotlet singularity screened over distances of the order of the chamber
height23. The function B(r) is also short ranged and accounts for a dipolar
repulsion. Conversely, C(r) is long ranged and decays algebraically as r22
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Figure 2 | Transition to directed collective motion. a, Dark-field pictures of a
roller population that spontaneously forms a macroscopic band propagating
along the racetrack. E0/EQ 5 1.39, w0 5 1022. Scale bar, 5 mm. b–d Close-up
views. The arrows correspond to the roller displacement between two
subsequent video frames (180 frames s21). b, Isotropic gas. w0 5 6 3 1024.

c, Propagating band. w0 5 1022. d, Homogeneous polar liquid.
w0 5 1.8 3 1021. Scale bar, 500mm. e, Modulus of the average polarization, P0,
plotted versus the area fraction, w0. Collective motion occurs as w0 exceeds
wc 5 3 3 1023. wc is independent of E0. Error bars, 1 s.d.
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v | | . The probability distribution involves more than 1.4 3 105 measurements of
instantaneous speed. c, Roller velocity, v0, plotted versus the field amplitude, E0.
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on a single master curve solely parameterized by the particle fraction,
w‘, away from the band: P s,tð Þ~1{w?=w s,tð Þ. As it turns out, this
relation corresponds to particle-number conservation in a system
where density and polarization waves propagate steadily at a velocity
v0 (ref. 22 and Supplementary Methods). This observation unambigu-
ously demonstrates that the band state corresponds to a genuine sta-
tionary flocking phase of colloidal active matter.

On further increasing the area fraction to more than w0 < 2 3 1022,
transient bands eventually catch up with themselves along the periodic
direction and form a homogeneous polar phase (Fig. 2d and Supp-
lementary Video 4) in which the velocity distribution condenses on a
single orientation of motion (Fig. 4a, to be contrasted with the perfectly

isotropic distribution for fractions less than wc in Fig. 1b). Conversely,
the roller positions are weakly correlated, as evidenced by the shape of
the pair-distribution function, which is similar to that found in low-
density molecular liquids (Fig. 4b). We also emphasize that the density
fluctuations are normal at all scales (Fig. 4c). This is experimental
observation of a polar-liquid phase of active matter. The existence of
a polar-liquid phase was theoretically established yet had not been
observed in any prior experiment involving active materials. Until
now, collective motion has been found to occur in the form of patterns
with marked density, orientational heterogeneities or both7,10,13,14,16.
Furthermore, in contrast with the present observations, giant density
fluctuations are considered to be a generic feature of the uniaxially
ordered states of liquids comprising self-propelled particles2,3,17. We
resolve this apparent contradiction below and quantitatively explain
our experimental observations.

From a theoretical perspective, the main advantage offered by the
rollers is that their interactions are clearly identified. We show in
Supplementary Methods how to establish the equations of motion of
Quincke rollers interacting through electrostatic and far-field hydro-
dynamic interactions. They take a compact form both for the position
ri and the orientation p̂i of the ith particle:

_ri~v0p̂i

_hi~
1
t

X

i=j

L
Lhi

Heff ri{rj,p̂i,p̂j
! "

Here p̂i makes an angle hi with the x axis, and a dot denotes a time
derivative. In dilute systems, the particle interactions do not affect their
propulsion speed, yet the electric field and flow field compete to align
the p̂i with them. This competition results in an effective potential, Heff,
for the p̂i. At leading order in a/r

Heff r,pi,pj
! "

~A rð Þp̂i.p̂jzB rð Þp̂i .̂r

zC rð Þp̂i. 2r̂r̂{Ið Þ.p̂j

where A(r) is a positive function and thus promotes the alignment of
the neighbouring rollers, I is the identity matrix, r̂r̂ is the outer product
of r̂ with itself, and a dot denotes tensor contraction. Importantly, A is
dominated by a hydrodynamic interaction, which arises from a hydro-
dynamic-rotlet singularity screened over distances of the order of the
chamber height23. The function B(r) is also short ranged and accounts

Is
ot

ro
pi

c 
ga

s P
ol

ar
 b

an
ds

P
ol

ar
 li

qu
id

a

b c d

e⊥

e

1

0.5

0

e

10–3 10–2 10–1

Π0

Ic I0

Figure 2 | Transition to directed collective motion. a, Dark-field pictures of a
roller population that spontaneously forms a macroscopic band propagating
along the racetrack. E0/EQ 5 1.39, w0 5 1022. Scale bar, 5 mm. b–d Close-up
views. The arrows correspond to the roller displacement between two
subsequent video frames (180 frames s21). b, Isotropic gas. w0 5 6 3 1024.

c, Propagating band. w0 5 1022. d, Homogeneous polar liquid.
w0 5 1.8 3 1021. Scale bar, 500mm. e, Modulus of the average polarization, P0,
plotted versus the area fraction, w0. Collective motion occurs as w0 exceeds
wc 5 3 3 1023. wc is independent of E0. Error bars, 1 s.d. e | | (or eH) is the unit
vector oriented along the tangent (or the normal) of the racetrack confinement.

1 2 3 4
0

1

2

3

0 4 8 12
0

4

8

E (V μm–1)

v 0 
(m

m
 s

–1
)

E0
2

v0
2

a

b

–2 –1 0 1 2
–2

–1

0

1

2

0

0.5

1

1.5

2

2.5

3
(×10–3)

E0 P P

Ω

2a

v = v0 p

v   (mm s–1)

v ⊥
 (m

m
 s

–1
)

ˇ

c

Figure 1 | Single-roller dynamics. a, Sketch of the Quincke rotation and of the
self-propulsion mechanisms of a colloidal roller characterized by its electric
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rollers. Time interval, 5.6 ms; scale bar, 50mm. b, Probability distribution of the
velocity vector (v | | , vH) for isolated rollers: v | | corresponds to the projection of
the velocity on the direction tangent to the racetrack (Fig. 2); vH is normal to
v | | . The probability distribution involves more than 1.4 3 105 measurements of
instantaneous speed. c, Roller velocity, v0, plotted versus the field amplitude, E0.
Inset, v2

0 versus E2
0. The black dots represent the maximum of the probability

distribution. Error bars, 1 s.d.
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on a single master curve solely parameterized by the particle fraction,
w‘, away from the band: P s,tð Þ~1{w?=w s,tð Þ. As it turns out, this
relation corresponds to particle-number conservation in a system
where density and polarization waves propagate steadily at a velocity
v0 (ref. 22 and Supplementary Methods). This observation unambigu-
ously demonstrates that the band state corresponds to a genuine sta-
tionary flocking phase of colloidal active matter.

On further increasing the area fraction to more than w0 < 2 3 1022,
transient bands eventually catch up with themselves along the periodic
direction and form a homogeneous polar phase (Fig. 2d and Supp-
lementary Video 4) in which the velocity distribution condenses on a
single orientation of motion (Fig. 4a, to be contrasted with the perfectly

isotropic distribution for fractions less than wc in Fig. 1b). Conversely,
the roller positions are weakly correlated, as evidenced by the shape of
the pair-distribution function, which is similar to that found in low-
density molecular liquids (Fig. 4b). We also emphasize that the density
fluctuations are normal at all scales (Fig. 4c). This is experimental
observation of a polar-liquid phase of active matter. The existence of
a polar-liquid phase was theoretically established yet had not been
observed in any prior experiment involving active materials. Until
now, collective motion has been found to occur in the form of patterns
with marked density, orientational heterogeneities or both7,10,13,14,16.
Furthermore, in contrast with the present observations, giant density
fluctuations are considered to be a generic feature of the uniaxially
ordered states of liquids comprising self-propelled particles2,3,17. We
resolve this apparent contradiction below and quantitatively explain
our experimental observations.

From a theoretical perspective, the main advantage offered by the
rollers is that their interactions are clearly identified. We show in
Supplementary Methods how to establish the equations of motion of
Quincke rollers interacting through electrostatic and far-field hydro-
dynamic interactions. They take a compact form both for the position
ri and the orientation p̂i of the ith particle:

_ri~v0p̂i

_hi~
1
t

X

i=j

L
Lhi

Heff ri{rj,p̂i,p̂j
! "

Here p̂i makes an angle hi with the x axis, and a dot denotes a time
derivative. In dilute systems, the particle interactions do not affect their
propulsion speed, yet the electric field and flow field compete to align
the p̂i with them. This competition results in an effective potential, Heff,
for the p̂i. At leading order in a/r

Heff r,pi,pj
! "

~A rð Þp̂i.p̂jzB rð Þp̂i .̂r

zC rð Þp̂i. 2r̂r̂{Ið Þ.p̂j

where A(r) is a positive function and thus promotes the alignment of
the neighbouring rollers, I is the identity matrix, r̂r̂ is the outer product
of r̂ with itself, and a dot denotes tensor contraction. Importantly, A is
dominated by a hydrodynamic interaction, which arises from a hydro-
dynamic-rotlet singularity screened over distances of the order of the
chamber height23. The function B(r) is also short ranged and accounts
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Figure 2 | Transition to directed collective motion. a, Dark-field pictures of a
roller population that spontaneously forms a macroscopic band propagating
along the racetrack. E0/EQ 5 1.39, w0 5 1022. Scale bar, 5 mm. b–d Close-up
views. The arrows correspond to the roller displacement between two
subsequent video frames (180 frames s21). b, Isotropic gas. w0 5 6 3 1024.

c, Propagating band. w0 5 1022. d, Homogeneous polar liquid.
w0 5 1.8 3 1021. Scale bar, 500mm. e, Modulus of the average polarization, P0,
plotted versus the area fraction, w0. Collective motion occurs as w0 exceeds
wc 5 3 3 1023. wc is independent of E0. Error bars, 1 s.d. e | | (or eH) is the unit
vector oriented along the tangent (or the normal) of the racetrack confinement.
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Figure 1 | Single-roller dynamics. a, Sketch of the Quincke rotation and of the
self-propulsion mechanisms of a colloidal roller characterized by its electric
polarization, P, and superposition of ten successive snapshots of colloidal
rollers. Time interval, 5.6 ms; scale bar, 50mm. b, Probability distribution of the
velocity vector (v | | , vH) for isolated rollers: v | | corresponds to the projection of
the velocity on the direction tangent to the racetrack (Fig. 2); vH is normal to
v | | . The probability distribution involves more than 1.4 3 105 measurements of
instantaneous speed. c, Roller velocity, v0, plotted versus the field amplitude, E0.
Inset, v2

0 versus E2
0. The black dots represent the maximum of the probability

distribution. Error bars, 1 s.d.
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Sounds and hydrodynamics of polar active fluids
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Figure 28 | Colloidal rollers self-assemble into a spontaneously-flowing liquid. a, Close up on a mi-
crofluidic channel including ⇠ 3 ⇥ 106 colloidal rollers forming a homogeneous polar liquid. The color of the
particles indicates the value of the angle, ✓i, between their instantaneous velocity and the direction of the mean
flow. Five trajectories illustrate the typical motion of the rollers. ⇢0 = 0.11. Scale bar: 100 µm. b, Probability
density function of the roller velocities, ⌫i(t), (ensemble and time integration). All the rollers propel along the
same average direction. ⇢0 = 0.24 as in all following panels. c, The color indicates the value of the density pair
correlation function g(x, y) evaluated at positions (x, y). Structural correlations are short ranged and display
only weak anisotropy. d, Cuts along the flow direction of the pair distribution functions, g(x, 0) [54], and of the
longitudinal velocity correlations Ck(x, 0), where Ck(r) ⌘ h⌫k

i
(t)⌫k

j
(t)i(ri�rj)=r,t/h(⌫k

i
)2(t)ii,t. Both structural,

and longitudinal- velocity correlations decay over few particle radii. e, Correlations of the transverse velocity
fluctuations (ensemble and time average): C?(r) ⌘ h⌫?

i
(t)⌫?

j
(t)i(ri�rj)=r,t/h(⌫?

i
)2(t)ii,t. The transverse fluctua-

tions are long ranged and strongly anisotropic. f, The correlations of the transverse velocity fluctuations, C?(r),
decay algebraically in both directions. The solid lines correspond to best algebraic fits: C?(x, 0) ⇠ x�0.84, and
C?(0, y) ⇠ y�0.76. g, Giant number fluctuations. Variance, �N2(`), of the number of particles measured in
square regions of size `. �N2(`) is plotted as a function of the average number of particle N(`) for five different
polar active liquids of average area fractions ⇢0 = 0.12, 0.18, 0.18, 0.24, 0.30, 0.39 labeled by colors of increasing
darkness. Solid lines: scaling �N2(`) ⇠ N(`) corresponding to normal density fluctuations as in equilibrium
fluids, and �N2(`) ⇠ N2(`) scaling law predicted from linear hydrodynamic theory, see e.g. [76]. Details about
number fluctuation measurements and power-law fit values are provided in Supplementary Note 1.
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Interactions (electrostatics + far field hydrodynamics)
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Figure S5 – Hydrodynamic interactions: a particle rolling in direction p̂ creates a flow field. The streamlines are plotted
in the plane containing all the other particles, which tend to align in flow. A– At distances smaller than the channel
height, the central roller induces a radial shear with anisotropic amplitude, which globally promotes alignment. B– At
distances much larger than the channel height, the non-screened resulting flow has a dipolar symmetry.

The global interaction potential He↵ accounts for all the possible interactions between the rollers that we have
established above. It takes the generic form:

He↵(r, p̂i, p̂j) = A(r) p̂j · p̂i +B(r) r̂ · p̂i + C(r) p̂j · (2r̂r̂� I) · p̂i (S18)

where the coefficients have complex expressions, deduced from well identified microscopic parameters:
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Here, r reduces to a two-dimensional vector parallel to the surface, and ⇥ accounts for the screening of finite-
range interactions. For sake of simplicity, we henceforth approximate the screening function by a step function:
⇥(r) = 1 if r  H/⇡, and ⇥(r) = 0 otherwise. We have also introduced a noise term in Eq. (S17) to account for
rotational diffusion. ⇠i(t) is a Gaussian white noise with zero mean and unit variance h⇠i(t)⇠j(t0)i = �(t� t

0)�ij .
Remarkably, the rotational diffusivity Dr is the only phenomenological coefficient of our theory.

Several comments are in order:
(i) The term A(r) p̂j · p̂i is an alignment interaction. It arises both from the short-distance hydrodynamic

interactions and from part of the electrostatic couplings. They correspond respectively to the first and the
second terms in (S19).

(ii) In the absence of the B and C terms, our model would reduce to the so-called "flying XY model"
introduced phenomenologically in [36]. Nevertheless, additional terms have been obtained from the microscopic
analysis.

(iii) The coefficient B(r) is positive, since �1+ 1
2 > 0 and �

1
< 0 in our experimental system. It corresponds

to the electrostatic repulsive coupling. The last term C(r) combines electric and hydrodynamic interactions.
Contrary to A(r), theses additional terms in Eq. (S18) do not yield any net alignment interaction in an isotropic
population.

(iv) A(r) and B(r) are finite-range interactions, being screened on a distance set by the channel height.

alignment repulsion dipolar LR

hydrodynamics

electro-statics

Figure S5 – Hydrodynamic interactions: a particle rolling in direction p̂ creates a flow field. The streamlines are plotted
in the plane containing all the other particles, which tend to align in flow. A– At distances smaller than the channel
height, the central roller induces a radial shear with anisotropic amplitude, which globally promotes alignment. B– At
distances much larger than the channel height, the non-screened resulting flow has a dipolar symmetry.

The global interaction potential He↵ accounts for all the possible interactions between the rollers that we have
established above. It takes the generic form:

He↵(r, p̂i, p̂j) = A(r) p̂j · p̂i +B(r) r̂ · p̂i + C(r) p̂j · (2r̂r̂� I) · p̂i (S18)

where the coefficients have complex expressions, deduced from well identified microscopic parameters:
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Here, r reduces to a two-dimensional vector parallel to the surface, and ⇥ accounts for the screening of finite-
range interactions. For sake of simplicity, we henceforth approximate the screening function by a step function:
⇥(r) = 1 if r  H/⇡, and ⇥(r) = 0 otherwise. We have also introduced a noise term in Eq. (S17) to account for
rotational diffusion. ⇠i(t) is a Gaussian white noise with zero mean and unit variance h⇠i(t)⇠j(t0)i = �(t� t

0)�ij .
Remarkably, the rotational diffusivity Dr is the only phenomenological coefficient of our theory.

Several comments are in order:
(i) The term A(r) p̂j · p̂i is an alignment interaction. It arises both from the short-distance hydrodynamic

interactions and from part of the electrostatic couplings. They correspond respectively to the first and the
second terms in (S19).

(ii) In the absence of the B and C terms, our model would reduce to the so-called "flying XY model"
introduced phenomenologically in [36]. Nevertheless, additional terms have been obtained from the microscopic
analysis.

(iii) The coefficient B(r) is positive, since �1+ 1
2 > 0 and �

1
< 0 in our experimental system. It corresponds

to the electrostatic repulsive coupling. The last term C(r) combines electric and hydrodynamic interactions.
Contrary to A(r), theses additional terms in Eq. (S18) do not yield any net alignment interaction in an isotropic
population.

(iv) A(r) and B(r) are finite-range interactions, being screened on a distance set by the channel height.

where rij = ri � rj = rij r̂ij , and where Pz and Pk are the components of the total polarization at order ✏0. We
recall that in an heterogeneous field, the dipolar fouling to the local field causes the roller to align its velocity in
a direction opposite to �Ek. Hence we infer from Eq. (S14) that the two-body electrostatic interactions combine
two contributions. The first term in Eq. (S14) is proportional to Pz. Since Pz < 0, this first term corresponds
to a repulsive interaction: it favors a roller velocity vi pointing in the direction opposite to r̂ij The second
term on the r.h.s of Eq. (S14) is proportional to Pk, and it possibly results in alignment or anti-alignment
with p̂j , depending on the relative positions between the two rollers. The symmetry of these two electrostatic
couplings is better understood by inspecting the electric-vector field plotted in Fig. S4. So far, we have implicitly
neglected the influence of the upper electrode, which is also a conducting equipotential surface. The former
results are therefore valid only at distance smaller than the separation distance H between the two electrodes.
Experimentally, the channel height is H = 200µm � a. At larger scales, all the electrostatic couplings are
exponentially screened over a characteristic length H/⇡.

As a last comment about electrostatic interactions, we note that Eqs. (S14) and (S15) confirm that the
perturbative treatment |�E|/E0 = O(✏), ⌧

��@zuk
�� = O(✏) is self-consistent for dilute systems as the algebraic

electrostatic repulsion prevents the formation of concentrated clusters in a population of rollers.

2. Hydrodynamic interactions

A similar approach is used to deal with the hydrodynamic interactions in dilute systems. The flow field
created by the particles is expressed in terms of pointwise hydrodynamic singularities. rij < H: Over distances
smaller than the channel height H, a Quincke roller is akin to a rotlet near a no-slip wall. The particle is a
pointwise torque-source which induces a complex flow field. This flow was computed by Blake and Chwang using
the image singularity method [34]. rij > H: At long distances, unlike electrostatic screening, mass conservation
gives rise to a non-vanishing flow having the form of a two-dimensional source dipole, as it was derived by
Hackborn for a rotlet located between two rigid walls [35]. These results provide the shear rate induced by
particle j at the location of the particle i. Keeping only the leading order terms in a a/rij expansion, we obtain
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The corresponding streamlines are plotted in Fig. S5. We showed that the particle velocity reorients along the
local direction of @zuk. Therefore, we deduce from Eq. (S15) and Fig. S5A that, at short distances (rij ⌧ H) the
hydrodynamic interactions promote the alignment of the roller velocities. In addition, for rij > H, long-range
hydrodynamic interactions that algebraically decay as r

�2 have a dipolar symmetry. They can either cause
alignment or anti-alignment, depending on the relative positions between the rollers, Fig. S5B.

3. Equations of motion

Assuming that both electrostatic and hydrodynamic interactions are pairwise additive, the above results can
be summarized in a compact form. The particle i moves at constant velocity v0 on the surface, and undergoes
a slow orientational dynamics:

ṙi = v0p̂i (S16)
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u Assuming pairwise interactions
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Conversely, C(r) contains the unscreened dipolar hydrodynamic coupling. It is truly long-ranged since it
algebraically decays like r

�2 in two dimensions. Note however, that its strength is small compared to the
short-range hydrodynamic effect, since it is proportional to a/H ⌧ 1.

(v) The hydrodynamic interactions yield no dependence on E0 for the effective potential He↵ , as the first
terms in Eqs. (S19) and (S21) show. Although the induced flow field is proportional to the particle velocity, the
norm of the velocity vector v0p̂ is constant. As a consequence, the resulting orientation rate does not depend
on v0, it is thus independent of the external electric field.

(vi) Finally we note, as we did it in the main text, that the generic relation (S18) is not specific to the
Quincke rollers. Indeed, this effective potential is expected whenever particles move at constant velocity, and
experience short-range polar alignment. The slow angular variations of the two-body interactions are described
by the first terms of a generic Fourier-expansion in ✓. Imposing global rotational invariance, the resulting ef-
fective potential can be recast into a function of p̂, leading to the generic equation (S18). In this approach, the
first term accounts for alignment in a uniform field. The repulsive term proportional to B(r) corresponds to a
local alignment in a monopolar field, while the last term corresponds to a local alignment in a dipolar field. We
stress that no other lower-order moment is allowed, due to symmetry considerations. Within this framework,
the flow induced by model swimmers referred to as pushers and pullers would be coupled via a higher order
quadrupolar term reflecting the symmetry of the flow lines induced by force dipoles [47].

III. FROM MICROSCOPIC INTERACTIONS TO MACROSCOPIC HYDRODYNAMIC
EQUATIONS

In the following, we link the microscopic interaction rules to the large-scale properties of the roller popula-
tion. The microscopic equations of motion have to be coarse-grained, in order to derive kinetic equations for
hydrodynamic fields such as the particle density and the orientation field. We sumarize here the main steps
of this procedure. Using standard kinetic theory methods (see e.g. [37, 38]), the 2N coupled Langevin equa-
tions (S16)–(S17) can be transformed into a Fokker-Planck equation for the N -particle distribution function
 (N)(r1..., rN , ✓1, ..., ✓N , t):
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By integrating over N�1 particle positions and directions, we obtain the time evolution of the one-particle den-
sity  (1)(r, ✓, t) ⌘ 1

(N�1)!
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The latter expression is the first equation of an infinite hierarchy, which couples the n-point distribution  (n)

to the (n + 1)-point distribution  (n+1). To close this hierarchy of equations, we postulate a relation between
 (2) and  (1), and introduce a generalized mean-field (i.e. Boltzmann-like) approximation. We assume that the
two-body correlations cancel over a distance as small as one particle diameter. We also include steric exclusion
effects between the colloids:

 (2)(r, r0, ✓, ✓0, t) =

8
<

:
0 if |r� r0| < 2a

 (1)(r, ✓, t) (1)(r0, ✓0, t) if |r� r0| � 2a
(S24)

Conversely, C(r) contains the unscreened dipolar hydrodynamic coupling. It is truly long-ranged since it
algebraically decays like r

�2 in two dimensions. Note however, that its strength is small compared to the
short-range hydrodynamic effect, since it is proportional to a/H ⌧ 1.

(v) The hydrodynamic interactions yield no dependence on E0 for the effective potential He↵ , as the first
terms in Eqs. (S19) and (S21) show. Although the induced flow field is proportional to the particle velocity, the
norm of the velocity vector v0p̂ is constant. As a consequence, the resulting orientation rate does not depend
on v0, it is thus independent of the external electric field.

(vi) Finally we note, as we did it in the main text, that the generic relation (S18) is not specific to the
Quincke rollers. Indeed, this effective potential is expected whenever particles move at constant velocity, and
experience short-range polar alignment. The slow angular variations of the two-body interactions are described
by the first terms of a generic Fourier-expansion in ✓. Imposing global rotational invariance, the resulting ef-
fective potential can be recast into a function of p̂, leading to the generic equation (S18). In this approach, the
first term accounts for alignment in a uniform field. The repulsive term proportional to B(r) corresponds to a
local alignment in a monopolar field, while the last term corresponds to a local alignment in a dipolar field. We
stress that no other lower-order moment is allowed, due to symmetry considerations. Within this framework,
the flow induced by model swimmers referred to as pushers and pullers would be coupled via a higher order
quadrupolar term reflecting the symmetry of the flow lines induced by force dipoles [47].
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By integrating over N�1 particle positions and directions, we obtain the time evolution of the one-particle den-
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The latter expression is the first equation of an infinite hierarchy, which couples the n-point distribution  (n)

to the (n + 1)-point distribution  (n+1). To close this hierarchy of equations, we postulate a relation between
 (2) and  (1), and introduce a generalized mean-field (i.e. Boltzmann-like) approximation. We assume that the
two-body correlations cancel over a distance as small as one particle diameter. We also include steric exclusion
effects between the colloids:
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Conversely, C(r) contains the unscreened dipolar hydrodynamic coupling. It is truly long-ranged since it
algebraically decays like r

�2 in two dimensions. Note however, that its strength is small compared to the
short-range hydrodynamic effect, since it is proportional to a/H ⌧ 1.

(v) The hydrodynamic interactions yield no dependence on E0 for the effective potential He↵ , as the first
terms in Eqs. (S19) and (S21) show. Although the induced flow field is proportional to the particle velocity, the
norm of the velocity vector v0p̂ is constant. As a consequence, the resulting orientation rate does not depend
on v0, it is thus independent of the external electric field.

(vi) Finally we note, as we did it in the main text, that the generic relation (S18) is not specific to the
Quincke rollers. Indeed, this effective potential is expected whenever particles move at constant velocity, and
experience short-range polar alignment. The slow angular variations of the two-body interactions are described
by the first terms of a generic Fourier-expansion in ✓. Imposing global rotational invariance, the resulting
effective potential can be recast into a function of p̂, leading to the generic equation (S18). In this approach,
the first term accounts for alignment in a uniform field. The repulsive term proportional to B(r) corresponds
to a local alignment in a monopolar field, while the last term corresponds to a local alignment in a dipolar
field. We stress that no other lower-order moment is allowed, due to symmetry considerations. Within this
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By integrating over N�1 particle positions and directions, we obtain the time evolution of the one-particle den-
sity  (1)(r, ✓, t) ⌘ 1
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The latter expression is the first equation of an infinite hierarchy, which couples the n-point distribution  (n)

to the (n + 1)-point distribution  (n+1). To close this hierarchy of equations, we postulate a relation between
 (2) and  (1), and introduce a generalized mean-field (i.e. Boltzmann-like) approximation. We

assume that the two-body correlations cancel over a distance as small as one particle diameter.

We also include steric exclusion effects between the colloids:
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0 if |r� r0| < 2a

 (1)(r, ✓, t) (1)(r0, ✓0, t) if |r� r0| � 2a
(S24)

 (1)(r, ✓, t)

(ce résultat mathématique indique simplement qu’il faut pousser la di�érentiation à l’ordre 2 pour obtenir
tous les termes en o(dt), en raison des propriétés des dérivées stochastiques). La somme sur i est ici implicite.
Ainsi,
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où l’on a intégré par partie pour passer à la dernière ligne.
La fonction f étant quelconque, on a donc (en réécrivant explicitement les sommes)
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A partir de cette équation de Fokker-Planck, on peut obtenir l’équation cinétique sur la fonction de
distribution à une particule
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(puisqu’on suppose que toutes les particules sont identiques).
Il su�t d’intégrer (1.13) pour obtenir
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qui fait donc apparaître la fonction de distribution à deux particules
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Finalement, on fait l’approximation que les corrélations sont négligeables au-delà d’une distance d ≥ 2a

et que la présence d’une particule interdit d’en trouver une autre à une distance inférieure à d ("volume
exclu") :
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Pour alléger les notations, on note désormais � = �(1) puisque l’on ne manipulera que la fonction à un
point. L’équation cinétique décrivant le système est donc
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This ansatz is supported by the absence of positional correlation in the three phases (gas, bands and polar
liquid). Even at the high densities, in the polar-liquid phase, the radial distribution function of the colloids is
very well approximated by a Heaviside function. In addition, we note that this approximation was successfully
used to describe the large scale behavior of driven confined suspensions [39]. We then derive from Eqs. (S23) and
(S24) a closed equation for the one-particle distribution function. The hydrodynamic fields that characterize
the structure of the population are defined by the angular Fourier modes of  (1). Defining these modes as
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Nematic order tensor: Q(r, t) ⌘ ⇡a
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In all that follows and in the main text we do not refer anymore to the electrostatic properties of the colloids.
Therefore, for sake of simplicity ⇧ will be simply referred to as the polarization field.

By integrating Eq. (S23) over ✓, we immediately recover the particle-number conservation law:

@t �+ v0r · (�⇧) = 0 (S28)

Taking the first angular moment of Eq. (S23) similarly couples the time evolution of ⇧ to the nematic order
tensor Q. We thereby generate a new hierarchy of equations which couples each moment of the distribution
function to higher-order moments [40–42]. One more closure assumption is required, and it should be carefully
defined for each phase that we want to describe as we will show it below.

IV. TRANSITION TO COLLECTIVE MOTION

We first focus on the transition to collective motion. For weakly-polarized phases, two possible closure
schemes have been used in the context of active fluids. Bertin et al. [43,44] introduced a scaling ansatz for the
amplitude of the angular Fourier components of the one-point function. This ansatz is expected to be relevant
for nearly-isotropic states with small and slow variations of the hydrodynamic field. Baskaran and Marchetti [41]
assume the distribution function to be a linear functional of its first three moments. This ansatz is obviously
exact in the limit of purely isotropic states. Coming back to our model for the population of rollers, (S16)–(S18),
we have checked that these two closure methods lead to the same kinetic equations, and are therefore strictly
equivalent. We also assume that Q is a fast-relaxing variable, following again [43] and [40] in a fluid mechanics
context. Within this approximation scheme, after lengthy algebra, and at leading order in a/H ⌧ 1, we obtain
the following equation for the evolution of the orientation field:
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This ansatz is supported by the absence of positional correlation in the three phases (gas, bands and polar
liquid). Even at the high densities, in the polar-liquid phase, the radial distribution function of the colloids is
very well approximated by a Heaviside function. In addition, we note that this approximation was successfully
used to describe the large scale behavior of driven confined suspensions [39]. We then derive from Eqs. (S23) and
(S24) a closed equation for the one-particle distribution function. The hydrodynamic fields that characterize
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In all that follows and in the main text we do not refer anymore to the electrostatic properties of the colloids.
Therefore, for sake of simplicity ⇧ will be simply referred to as the polarization field.

By integrating Eq. (S23) over ✓, we immediately recover the particle-number conservation law:
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In all that follows and in the main text we do not refer anymore to the electrostatic properties of the colloids.
Therefore, for sake of simplicity ⇧ will be simply referred to as the polarization field.

By integrating Eq. (S23) over ✓, we immediately recover the particle-number conservation law:
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Taking the first angular moment of Eq. (S23) similarly couples the time evolution of ⇧ to the nematic order
tensor Q. We thereby generate a new hierarchy of equations which couples each moment of the distribution
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defined for each phase that we want to describe as we will show it below.
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In all that follows and in the main text we do not refer anymore to the electrostatic properties of the colloids.
Therefore, for sake of simplicity ⇧ will be simply referred to as the polarization field.

By integrating Eq. (S23) over ✓, we immediately recover the particle-number conservation law:
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Taking the first angular moment of Eq. (S23) similarly couples the time evolution of ⇧ to the nematic order
tensor Q. We thereby generate a new hierarchy of equations which couples each moment of the distribution
function to higher-order moments [40–42]. One more closure assumption is required, and it should be carefully
defined for each phase that we want to describe as we will show it below.
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In all that follows and in the main text we do not refer anymore to the electrostatic properties of the colloids.
Therefore, for sake of simplicity ⇧ will be simply referred to as the polarization field.

By integrating Eq. (S23) over ✓, we immediately recover the particle-number conservation law:
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Taking the first angular moment of Eq. (S23) similarly couples the time evolution of ⇧ to the nematic order
tensor Q. We thereby generate a new hierarchy of equations which couples each moment of the distribution
function to higher-order moments [40–42]. One more closure assumption is required, and it should be carefully
defined for each phase that we want to describe as we will show it below.
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4 Théorie cinétique d’un état ordonné
Le système d’équations cinétiques (2.28) obtenu précédemment ne décrit correctement le système qu’au

voisinage d’un état isotrope. Pour décrire une phase "presque polaire", il faut utiliser une autre relation de
fermeture, sur le modèle de Hinch et Leal, puisque cette fois les coe�cients de Fourier �̂k sont tous du même
ordre. On écrit que la distribution �(r, „, t) des orientations en r à t est peu dispersée autour d’une valeur
moyenne „̄(r, t) : on pose

„ = „̄ + 2fi‘ (4.1)

avec ‘ π 1 le petit paramètre pertinent dans cette approche.
Alors on a

1
fl

⁄
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c’est-à-dire
Q = � � ≠

1
2 + O(‘2) (4.3)

qui est la relation de fermeture cherchée.

En suivant la même procédure de développement en gradients que précédemment, on obtient
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et en posant e�ectivement d = 2a
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En particulier, l’état stationnaire et homogène solution de ce systèmes est

�2
0 = 1 ≠

·Dr

2(— + “)a2fl0
= 1 ≠

flc

2fl0
(4.6)

qui tend bien vers 1 si ·Dr æ 0, et les projecteurs dans les termes suivants assurent une évolution à norme
constante si �0 = 1. Cette expression est également tracée figure 4a. A nouveau, il n’y a pas de critère
absolu indiquant à partir de quelle concentration la fermeture (4.3) est valide, mais il faut �0 ≠ 1 π 0, on
peut seulement a�rmer que les résultats semblent cohérents avec cette hypothèse dès fl0 & 5 à 10 flc.

Cette fois, le terme non local n’est pas sous-dominant puisque �2 est proche de 1. A noter que le terme
suivant en Ò est d’ordre “La

3
q

2
fl� (avec toujours q ≥ Ò), donc il peut e�ectivement être négligé devant le

terme en Ÿ puisque qL π 1.

En résumé, on peut considérer 2 types de problèmes :
• la transition ferro-para et l’émergence d’une phase polaire autour d’un état désordonné : il faut tra-

vailler avec les équations (2.28) ;
• la structure de la phase ordonnée : il faut travailler avec les équations (4.5).
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Hydrodynamics applications (I)

u Near onset :
Homogeneous solution:

Linear stability analysis => homogeneous solution is unstable

u Steady propagating solutions :
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We stress that all the coefficients involved in the above non-local equation have been inferred from a well
controlled microscopic model introduced in the first section of this document. We only briefly recall their
physical origin:

• ↵ > 0 accounts for the alignment interactions, which favor the emergence of polar order. It is chiefly set
by the local hydrodynamic interactions between the rollers (first term on the r.h.s of Eq. S30). It yields
the same generic terms as those found in [43] or [36] (when the particle velocity is constant), which are
known to lead to large-scale coherent motion.

• � > 0 stems from the repulsive electrostatic couplings.

•  gives the strength of the long-range dipolar hydrodynamic interactions, which result in a non-local op-
erator M. We studied the impact of these truly long-range interactions in [39,45].

A. Homogeneous states: A Curie-Weiss description of collective motion

Looking for homogeneous phases, i.e. dropping space derivatives, Eq. (S28) reduces to �(r, t) = �0, and
Eq. (S29) takes the simple form:
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Hence, it readily follows from the cubic form of the r.h.s that the system undergoes a mean-field phase transition
to a polar state as �0 exceeds the critical area fraction:

�c =
⌧Dr

↵
(S35)

At small density �0  �c, the only stationary state is an isotropic phase with zero mean orientation: ⇧0 = 0.
The disordered solution becomes unstable above �c, and the system forms a polar ordered phase with ⇧0 6= 0.
At the onset of collective motion, the following bifurcation is expected, see also Fig. S6B:
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(S36)

Starting from a realistic and accurate microscopic description of the Quincke mechanism at the single-roller
level, we have established the existence of a genuine phase transition to collective motion in populations of such
active colloids. This is one of our main theoretical results.

To further stress on the importance of the hydrodynamic interactions in this collective phenomena, we plot
the variations of �c as a function of E0 in Fig. S6A. Using microscopic parameters corresponding to our experi-
mental setup, we indeed observe that the transition line weakly depends on the magnitude of external field. As

Figure S7 – Stability of weakly-polar states against linear fluctuations. The growth rates of the three eigenmodes modes
are plotted as a function of the wave-vector direction 'q, for E0 = 2EQ, �0 = 1.1�c and qa = 1

500 . The values of the
other parameters are the same as in Fig. S6. Instabilities were observed for all values of E0, �0, and qa.

Isotropic phases A similar stability analysis is carried out around a uniform and isotropic state ⇧0 = 0. Two
modes couple the density fluctuations and the orientational perturbations in the longitudinal direction. The
corresponding eigenvalues are !± = i
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i
. We also find a pure transverse

orientational mode, with the pulsation !? = i
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⌧
(�0 � �c). We find that the isotropic state is linearly stable

below the critical density �c. However, it is unstable against both orientation and compression fluctuations
when �0 > �c. Again, the fact that compression modes are unstable is consistent with the formation of bands
from isotropic phases, which is observed experimentally when �0 > �c.

C. Constitutive density-polarization relation in band phases

At the onset of collective motion, homogeneous states are linearly unstable. The experiments show that large
density excitations (bands) steadily propagate in the system. It is difficult to derive analytically the shape of
band-density profiles. However, the particle-number conservation provides a relation between the local density
and the local polarization field when density excitations propagate steadily. Looking for propagative solutions
of the form � = �(x� cbandt), ⇧ = ⇧(x� cbandt)x̂ and integrating Eq. (S28) over the transverse direction leads
to the relation
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✓
1� �1

�(s)

◆
(S37)

where the integration constant �1 is the area fraction far away from the band. Note that this expression does
not depend on any closure scheme at the hydrodynamic level. The latter relation was used to fit the data, Fig. 3d
in the main text. The agreement with our theoretical prediction is a direct proof that the bands are stationary
structures as it was also demonstrated in [43] for the numerical Vicsek model. Band states are genuine phases
of colloidal active matter.

V. POLAR LIQUID PHASE

The closure scheme we followed above (a scaling ansatz for the magnitude of the Fourier modes of  ) was
widely implemented in the previous studies on active matter. We stress that this scheme is not relevant any more
for strongly polarized phases. In particular, it results in an unexpected decay of the mean orientation ⇧0 with
the density, as shown in Fig. S6B (dashed line). This approximation does not support the observation of stable
homogeneous polar liquids, in strong contrast with our experimental findings. This may not be surprising, since

owing to another hydrodynamic singularity induced by the roller
motion in confinement. This singularity is referred to as a source doub-
let24. Neither B nor C yields any net alignment interaction. If these two
terms were neglected, our model built from the actual microscopic
interactions would amount to the ‘flying xy model’ introduced on phe-
nomenological grounds in ref. 25. We emphasize that Heff is independ-
ent of v0 and E0, and that it is not specific to the Quincke mechanism. Its
form could have been deduced from generic arguments based on global
rotational invariance.

We then use a conventional Boltzmann-like kinetic-theory frame-
work to derive the large-scale equation of motion for the density, and
the polarization fields22,25. In the present case, this approximation was
fully supported by the weak positional correlations in all the three
phases, as exemplified in Fig. 4b. The resulting hydrodynamic equations
are shown in Supplementary Methods. At the onset of collective motion,
the magnitudes of the terms arising from the long-range hydrodynamic
interactions are negligible. We are therefore left with equations for w and
P akin to those in the model of refs 2, 3. However, we explicitly provide
the functional form of the transport coefficients introduced on phe-
nomenological grounds in ref. 2. Accordingly, we find that the competition
between the polar ordering (induced by the short-range hydrodynamic
interactions) and rotational diffusion yields a mean-field phase trans-
ition between an isotropic state and a macroscopically ordered state
(Supplementary Methods). The phase transition occurs above a critical
fraction, wc, that does not depend on the particle velocity (that is, on
E0), in agreement with our experiments: collective motion chiefly
stems from hydrodynamic interactions between the electrically pow-
ered rollers. However, at the onset of collective motion (that is, for
w0 . wc), the homogeneous polar state is linearly unstable to spatial
heterogeneities. Moreover, for w0 . wc, the compression modes are

unstable eigenmodes of the isotropic state, in agreement with the
emergence of density bands observed in the experiments, all starting
from a homogeneous state and an isotropic velocity distribution.

We also rigorously establish a kinetic theory for the strongly polar-
ized state reached for w0wwc (Supplementary Methods). In this
regime, the short-range electrostatic repulsion matters, causing the
density fluctuations to relax and stabilizing the polar-liquid state. In
addition, the long-range hydrodynamic interactions further stabilize
the system by damping the modes of P with non-zero divergence, that
is, the splay modes that couple orientation disturbances to density
fluctuations24. @As a result, the giant density fluctuations26 are sup-
pressed, in agreement with our unanticipated experimental findings
(Fig. 4c and Supplementary Methods). We stress here that these long-
range hydrodynamic interactions do not depend at all on the propul-
sion mechanism at the individual level. They solely arise from the
confinement of the fluid in the z direction24. They are therefore not
specific to the Quincke propulsion mechanism. The only way to des-
troy the robust polar-liquid phase is to prevent it geometrically by
eliminating the angular periodicity of the confinement in the curvilin-
ear coordinate. In rectangular geometries with large enough aspect
ratios, we observe that the bands never relax but rather bounce end-
lessly against the confining box (Supplementary Video 5). In confine-
ment with an aspect ratio of order one, the band state is replaced by a
single macroscopic spiral (Supplementary Video 6).

We have engineered large-scale populations of self-propelled part-
icles from which collective macroscopic polar motion emerges from
hydrodynamic interactions at exceptionally small densities. We believe
that control over their interactions, and the ease with which they can be
confined in custom geometries, will extend the present framework of
active matter to include collective motion in more complex environ-
ments relevant to biological, robotic and social systems.

METHODS SUMMARY
We use commercial poly(methyl methacrylate) colloids (Thermo Scientific G0500;
2.4-mm radius), dispersed in a 0.15 mol l21 AOT/hexadecane solution. The sus-
pension is injected into a wide microfluidic chamber made of double-sided Scotch
Tape. The tape is sandwiched between two ITO-coated glass slides (Solems,

3

2

0

–1

–2

–3

1

v ⊥
 (m

m
 s

–1
)

v  (mm s–1)

–3 0 3–2 –1 1 2

0.06

0.04

0.02

1.2

0.8

0.4

0.2

g(
r/

2a
)

0 2 4 6 8 10
r/2a

103

102

101

100

101 102 103

N

Slope =
 1

N
2

a b

c

Δ

Figure 4 | Polar-liquid state. a, Probability distribution of the velocity vector
(v | | , vH) in the polar-liquid state. The probability distribution involves more
than 3.2 3 107 measurements of instantaneous speed. b, Pair correlation
function, g, of the particle position in the polar-liquid state. c, The variance of
the number of colloids,DN2, scales linearly with the average number of colloids,
N, counted inside boxes of increasing size. E0/EQ 5 1.39, w0 5 9.5 3 1022.

0 0.2 0.4 0.6 0.8 1

100

101

s/L

I
(s

/L
)/I

c 
– 

1

0 0.5 1
–0.5

0

0.5

1

1 – I∞/I(s)

Π

ba

dc

0 0.02 0.04 0.06
0

4

8

12

16

I(s/L = 0.8)s/L
0 1

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1

I0

L ba
nd

/L

Lband

Time (s)

(s)

Figure 3 | Propagating-band state. a, Spatiotemporal variations of the area
fraction measured along the curvilinear coordinate, s, and temporal variations
of the area fraction at s 5 0.8L (white dashed line), where L is the overall length
of the racetrack. b, Band shape plotted versus the rescaled curvilinear
coordinate, s/L, for w0 5 5.3 3 1023 (dark blue), 7.8 3 1023 (blue), 1.0 3 1022

(cyan) and 1.5 3 1022 (orange). c, The rescaled band length, Lband/L, increases
with w0 and is independent of L (white dots, L 5 28 mm; grey dots, L 5 50 mm;
black dots, L 5 73 mm). Error bars show the estimated error associated with the
measurement of Lband. d, P(s) plotted versus 1 2 w‘/w(s). The black dots
correspond to averages over 5,000 local measurements (grey dots). The red
curve is the theoretical prediction. Error bars, 1 s.d.

LETTER RESEARCH

0 0 M O N T H 2 0 1 3 | V O L 0 0 0 | N A T U R E | 3

0 0.2 0.4 0.6 0.8 1

10
0

10
1

s/L

Φ
(s
/
L
)

Φ
c

−
1

0 0.5 1
-0.5

0

0.5

1

1− Φ∞/Φ(s)

Π(s)

ba

dc
0 0.02 0.04 0.06

0

4

8

12

16

Φ(s/L = 0.8)s/L
0 1

0 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

1

Φ0

Lband
L

L band

time(s)



30

Hydrodynamics theory (ii)

u In the polar phase : sound propagation

29/10/2021

Appendix

variations of the speed of sound are given by:

2c±(✓) = (1 + �1) u0 cos ✓ (48)

±
q

(�1 � 1)2 u2
0 cos2 ✓ + 4�⇢0 sin2 ✓.

This prediction is in excellent agreement with the
speed of sound measurements showed in Figs. 29g, 29h,
and 29i for three different densities. As the mean-
flow speed u0(⇢0) is measured independently, fitting our
data requires only two unknown functional parameters
�(⇢0) and �1(⇢0). The variations of c±(✓) therefore pro-
vide a direct measurement of the active-fluid compress-
ibility and advection coefficients, Figs. 30c and 30d.
The consistency of this method is further established
by repeating the same measurements in two different
channel geometries, and comparing the density depen-
dence of the hydrodynamic coefficients with the kinetic-
theory predictions of [13, 12, 84], see Supplementary
Note 3. Figure 30c shows a good agreement for the
variations of �(⇢0) over a range of densities. As in stan-
dard liquids, the compressibility increases with ⇢0. In
the case of �1 the agreement is also satisfactory but not
as accurate, see Fig.30d. Nonetheless theory predicts
the correct order of magnitude, and more importantly
the absence of variations of �1 with ⇢0. We now mea-
sure the elastic constants of the active fluid from the
damping of the sound waves. Their damping time is set
by the inverse of the spectral widths �!± = q2�±(✓),
where the expression of the angular functions �±(✓) is
given in Supplementary Note 3. Fig. 30e agrees with
the q2 scaling behavior, and we show in Fig. 30f that
the angular variations of �±(✓) are correctly fitted by
the linear hydrodynamic theory. Given the shape of
the power spectra, Fig. 29f, measuring �± at small ✓
is out of reach of our experiments at high packing frac-
tions. We therefore focus on two high angle values.
For ✓ = ⇡/2 and ✓ = ⇡/4, the spectral widths take the
simple forms: �!±(⇡/2) = q2D?/2 and �!±(⇡/4) =
q2

⇥
1
4 (D? + Dk + D0) ± (⇢0D⇢u0)/

p
4�⇢0

⇤
, as detailed

in Supplementary Note 3. A quadratic fit of �!±(⇡/2)
therefore provides a direct measure of D?, Fig. 30e.
Similarly, a quadratic fit of [�!+(⇡/4) + �!�(⇡/4)] =
1
2 (D? + Dk + D0)q2 gives the value of (D? + Dk) as
D0 = 4 ⇥ 10�6 mm2/s is four orders of magnitude
smaller than D? ⇠ Dk ⇠ 10�2 mm2/s, see Fig 30b.
The measured values of the elastic constants D? and
Dk are shown in Figs. 30g and 30h for different packing
fractions. Their order of magnitude, Fig. 30e, and more
importantly their linear increase with ⇢0, Figs. 30g

and 30h, are consistent with kinetic theory which also
predicts that D0 should be vanishingly small. In prin-
ciple, D⇢ could be measured for any polar active liquid
from the value of �!+(✓) � �!�(✓) ⇠ D⇢q2. In the
specific case of the colloidal rollers, kinetic theory pre-
dicts that D⇢ should be independent of ⇢. The preci-
sion of our measurements is however not sufficient for
an accurate estimate of the variations of �!± with the
roller fraction. For all fractions below ⇢0 = 0.24 we find
D⇢ = 1 ± 0.5 10�2 mm2/s. Analysing the spontaneous
fluctuations of the polar active fluids, we have mea-
sured all its six materials constants, thereby providing
a full description of its linear hydrodynamics.

Before closing this letter, two comments are in or-
der. Firstly, the q2 damping of the sound modes implies
a �N2 ⇠ N2 scaling for the number fluctuations [76].
While giant number fluctuations are consistently found
in all our experiments, linear theory overestimates their
amplitude, see Fig. 28g. This last observation might
suggest that the largest scales accessible in our ex-
periments are smaller but not too far from the onset
of hydrodynamic breakdown predicted in [122, 123].
Secondly, we here focus on homogeneous active mate-
rials. A natural extension to this work concerns sound
propagation in more complex active media such as mi-
crofluidic lattices [112], or curved surfaces [104] where
topologically-protected chiral sound modes are theoret-
ically predicted.

In conclusion, two decades after the seminal predic-
tions of Toner and Tu, we have experimentally demon-
strated that the interplay between motility and soft ori-
entational modes results in sound-wave propagation in
colloidal active liquids. We have exploited this counter-
intuitive phenomenon to lay out a generic spectroscopic
method, which could give access to the material con-
stants of all active materials undergoing spontaneous
flows. Active-sound spectroscopy applies beyond syn-
thetic active materials [22, 140], and could be used to
quantitatively describe large-scale flocks, schools, and
swarms as continuous media [21, 50, 15, 20].
Acknowledgements. We acknowledge support from
ANR program MiTra and Institut Universitaire de
France. We thank O. Dauchot, A. Souslov and espe-
cially H. Chaté, B. Mahault, S. Ramaswamy, Y. Tu and
J. Toner for invaluable comments and discussions.
Author Contributions. D. B. conceived the project.
D. G. and D. B. designed the experiments. D. G. and
A. M. performed the experiments. D. G. and D. B.

117

Appendix

variations of the speed of sound are given by:

2c±(✓) = (1 + �1) u0 cos ✓ (48)

±
q

(�1 � 1)2 u2
0 cos2 ✓ + 4�⇢0 sin2 ✓.

This prediction is in excellent agreement with the
speed of sound measurements showed in Figs. 29g, 29h,
and 29i for three different densities. As the mean-
flow speed u0(⇢0) is measured independently, fitting our
data requires only two unknown functional parameters
�(⇢0) and �1(⇢0). The variations of c±(✓) therefore pro-
vide a direct measurement of the active-fluid compress-
ibility and advection coefficients, Figs. 30c and 30d.
The consistency of this method is further established
by repeating the same measurements in two different
channel geometries, and comparing the density depen-
dence of the hydrodynamic coefficients with the kinetic-
theory predictions of [13, 12, 84], see Supplementary
Note 3. Figure 30c shows a good agreement for the
variations of �(⇢0) over a range of densities. As in stan-
dard liquids, the compressibility increases with ⇢0. In
the case of �1 the agreement is also satisfactory but not
as accurate, see Fig.30d. Nonetheless theory predicts
the correct order of magnitude, and more importantly
the absence of variations of �1 with ⇢0. We now mea-
sure the elastic constants of the active fluid from the
damping of the sound waves. Their damping time is set
by the inverse of the spectral widths �!± = q2�±(✓),
where the expression of the angular functions �±(✓) is
given in Supplementary Note 3. Fig. 30e agrees with
the q2 scaling behavior, and we show in Fig. 30f that
the angular variations of �±(✓) are correctly fitted by
the linear hydrodynamic theory. Given the shape of
the power spectra, Fig. 29f, measuring �± at small ✓
is out of reach of our experiments at high packing frac-
tions. We therefore focus on two high angle values.
For ✓ = ⇡/2 and ✓ = ⇡/4, the spectral widths take the
simple forms: �!±(⇡/2) = q2D?/2 and �!±(⇡/4) =
q2

⇥
1
4 (D? + Dk + D0) ± (⇢0D⇢u0)/

p
4�⇢0

⇤
, as detailed

in Supplementary Note 3. A quadratic fit of �!±(⇡/2)
therefore provides a direct measure of D?, Fig. 30e.
Similarly, a quadratic fit of [�!+(⇡/4) + �!�(⇡/4)] =
1
2 (D? + Dk + D0)q2 gives the value of (D? + Dk) as
D0 = 4 ⇥ 10�6 mm2/s is four orders of magnitude
smaller than D? ⇠ Dk ⇠ 10�2 mm2/s, see Fig 30b.
The measured values of the elastic constants D? and
Dk are shown in Figs. 30g and 30h for different packing
fractions. Their order of magnitude, Fig. 30e, and more
importantly their linear increase with ⇢0, Figs. 30g

and 30h, are consistent with kinetic theory which also
predicts that D0 should be vanishingly small. In prin-
ciple, D⇢ could be measured for any polar active liquid
from the value of �!+(✓) � �!�(✓) ⇠ D⇢q2. In the
specific case of the colloidal rollers, kinetic theory pre-
dicts that D⇢ should be independent of ⇢. The preci-
sion of our measurements is however not sufficient for
an accurate estimate of the variations of �!± with the
roller fraction. For all fractions below ⇢0 = 0.24 we find
D⇢ = 1 ± 0.5 10�2 mm2/s. Analysing the spontaneous
fluctuations of the polar active fluids, we have mea-
sured all its six materials constants, thereby providing
a full description of its linear hydrodynamics.

Before closing this letter, two comments are in or-
der. Firstly, the q2 damping of the sound modes implies
a �N2 ⇠ N2 scaling for the number fluctuations [76].
While giant number fluctuations are consistently found
in all our experiments, linear theory overestimates their
amplitude, see Fig. 28g. This last observation might
suggest that the largest scales accessible in our ex-
periments are smaller but not too far from the onset
of hydrodynamic breakdown predicted in [122, 123].
Secondly, we here focus on homogeneous active mate-
rials. A natural extension to this work concerns sound
propagation in more complex active media such as mi-
crofluidic lattices [112], or curved surfaces [104] where
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ically predicted.
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Figure 29 | Sound modes in polar active fluids. a, Two-time autocorrelations of the density fluctuations of
wave vector q, with q = 0.52 µm�1, for two different directions of propagations, ✓ = 0 and ✓ = ⇡/8. ⇢0 = 0.11.
b, Two-time autocorrelations of the transverse velocity fluctuations for the same wave vectors as in a. ⇢0 = 0.11.
c, Density (red) and velocity (blue) power spectra for q = 0.39 and ✓ = ⇡/4. The two spectra have two peaks
located at the same frequency !± and have identical width �!±. Both spectra reflect the propagation of the
same mixed modes combining velocity and density excitations. ⇢0 = 0.11. d, e and f, Full power spectra of
the transverse velocity fluctuations h|vq,!|2i/h|vq=0,!=0|2i. They clearly show the dispersion relations of the
mixed sound modes along three different directions ✓ = ⇡/4, ✓ = ⇡/2 and ✓ = ⇡/8. The dashed line in panel
d corresponds to the cut showed in c. Sound modes propagate in a non dispersive fashion only at small qs.
⇢0 = 0.11. g, h and i, Polar plots of the speed of sound, c±(✓) = limq!0[! ± (✓)/q] measured from the slope
at q = 0 of the dispersion relations. Experimental data: Red dots (resp. blue dots) correspond to c+(✓) (resp.
c�(✓)). Solid lines: theoretical fits from Eq. (48). The roller area fractions are ⇢0 = 0.11 in g, ⇢0 = 0.18 in h,
and ⇢0 = 0.24 in i.
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Figure 29 | Sound modes in polar active fluids. a, Two-time autocorrelations of the density fluctuations of
wave vector q, with q = 0.52 µm�1, for two different directions of propagations, ✓ = 0 and ✓ = ⇡/8. ⇢0 = 0.11.
b, Two-time autocorrelations of the transverse velocity fluctuations for the same wave vectors as in a. ⇢0 = 0.11.
c, Density (red) and velocity (blue) power spectra for q = 0.39 and ✓ = ⇡/4. The two spectra have two peaks
located at the same frequency !± and have identical width �!±. Both spectra reflect the propagation of the
same mixed modes combining velocity and density excitations. ⇢0 = 0.11. d, e and f, Full power spectra of
the transverse velocity fluctuations h|vq,!|2i/h|vq=0,!=0|2i. They clearly show the dispersion relations of the
mixed sound modes along three different directions ✓ = ⇡/4, ✓ = ⇡/2 and ✓ = ⇡/8. The dashed line in panel
d corresponds to the cut showed in c. Sound modes propagate in a non dispersive fashion only at small qs.
⇢0 = 0.11. g, h and i, Polar plots of the speed of sound, c±(✓) = limq!0[! ± (✓)/q] measured from the slope
at q = 0 of the dispersion relations. Experimental data: Red dots (resp. blue dots) correspond to c+(✓) (resp.
c�(✓)). Solid lines: theoretical fits from Eq. (48). The roller area fractions are ⇢0 = 0.11 in g, ⇢0 = 0.18 in h,
and ⇢0 = 0.24 in i.
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c, Density (red) and velocity (blue) power spectra for q = 0.39 and ✓ = ⇡/4. The two spectra have two peaks
located at the same frequency !± and have identical width �!±. Both spectra reflect the propagation of the
same mixed modes combining velocity and density excitations. ⇢0 = 0.11. d, e and f, Full power spectra of
the transverse velocity fluctuations h|vq,!|2i/h|vq=0,!=0|2i. They clearly show the dispersion relations of the
mixed sound modes along three different directions ✓ = ⇡/4, ✓ = ⇡/2 and ✓ = ⇡/8. The dashed line in panel
d corresponds to the cut showed in c. Sound modes propagate in a non dispersive fashion only at small qs.
⇢0 = 0.11. g, h and i, Polar plots of the speed of sound, c±(✓) = limq!0[! ± (✓)/q] measured from the slope
at q = 0 of the dispersion relations. Experimental data: Red dots (resp. blue dots) correspond to c+(✓) (resp.
c�(✓)). Solid lines: theoretical fits from Eq. (48). The roller area fractions are ⇢0 = 0.11 in g, ⇢0 = 0.18 in h,
and ⇢0 = 0.24 in i.
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Summary for rolling colloids

u Constant velocity
u Explicit Alignment interactions (electrostatic and hydrodynamics) at low 

enough density to avoid hard core interactions => point like.
=> the perfect system for realizing the Vicsek scenario

u Indeed observed
First order transition to collective motion
Polar bands
True Long Range Order polar motion

u Sound waves in the polar phase
An excellent confirmation of the linear hydrodynamics theory

u Giant density fluctuations
Present but impossible to validate exponent

29/10/2021
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Outline: from active liquids to active solids

u Active fluids : a brief overview with a focus on collective motion
mechanical pressure is not a state variable
liquid-gas phase separation takes place in purely repulsive systems
macroscopic flows emerge in the absence of external gradient

u Active solids :
spontaneous flows also take place in crystalline structure
selective & collective actuation emerges in linear elastic systems

29/10/2021
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Increasing Packing Fraction might be relevant…
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Possible situations & questions

u Crowding effects

Slowing down => MIPS

Alignment could suppress the slowing down => avoided MIPS

u Structural ordering

Does crystallization takes place or do active stresses prevent it?

Alignment could reduce the active stresses => promote the crystal

u Today : One specific system -> Self Propelled Hard Disks

Does spontaneous alignment survive?

29/10/2021
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FIG. 5. (color online) Examples of phase separation kinet-
ics. Left: A system with Pe = 100, � = 0.45 in which a
delayed nucleation event leads quickly to steady-state. For
shallowly-quenched systems, the nucleation time can be long
enough that artificial seeding is needed to make nucleation
computationally accessible. Right: A system with Pe = 80,
� = 0.6 where spinodal decomposition leads to a coarsening
regime which slowly evolves towards steady-state (see S1 in
[27]). Inset shows mean cluster size scaling approximately as

t
1
2 . (see S8 in [27]).

scales as !�1/2 and hence the material is shear thinning,
b) at intermediate frequencies, the viscosity scales as !1/2

and hence is shear thickening and c) on the longest time
scales the material is Newtonian in its response to shear.
Thus, the rotational di↵usion time, which sets the per-
sistence of motion in the gas phase, also demarcates the
transition from complex to Newtonian rheology in the
active hexatic material.
Kinetics of Phase Separation: Despite the athermal
origins of phase separation in this system, simula-
tions quenched from a homogeneous state to parame-
ters where clustering occurs move through familiar nu-
cleation, growth, and coarsening stages (Fig. (5)). How-
ever, in the coarsening regime we find surprisingly that
the mean cluster size scales as t

1
2 , with a correspond-

ing length scale L(t) ⇠ t
1
4 (Fig. (5) inset, also see S8

in [27]). This di↵ers from the standard 2D coarsening
exponents, but matches recent simulation results for the
Vicsek model and related active systems [39]. Our results
should be viewed as preliminary due to the limited range
of our data, but nevertheless this unexpected similar-
ity between the coarsening of point-particles with polar
alignment and that of hard spheres with no alignment
suggests a deep relationship between these very di↵erent
types of systems. Future work is needed to uncover the
origins of these scaling exponents and their implications
for universality in active fluids.
Discussion: A fluid of self-propelled colloidal spheres
exhibits the athermal phase separation that is intrinsic
to active fluids and is a primary mechanism leading to
emergent structures in diverse systems [2, 24]. We have
shown that the physics underlying this phase behavior
can be understood in terms of microscopic parameters.
From a practical perspective, our simulations show that

the active hexatic dense phase exhibits a combination of
structural and transport properties not achievable in a
traditional passive material. Further development of ex-
perimental realizations of this system (e.g. Ref. [22])
will advance the development of materials whose phase
behavior, rheology, and transport properties can be pre-
cisely controlled by activity level.
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FIG. 2. (color online) Left: Phase densities as a function of
Péclet number (Pe) for a range of overall �. At low Pe the sys-
tem is single-phase, while at increased Pe it phase-separates.
The coexistence boundary is analogous to the binodal curve of
an equilibrium fluid, with Pe acting as an attraction strength.
Right: ‘Giant’ number fluctuations in high � and Pe systems.
Plot shows the exponent � with the standard deviation of par-
ticle counts in various-sized subsystems scaling as � ⇠ hni�.

Their evolution is governed by the coupled overdamped
Langevin equations:

ṙi = D� [F ex({ri}) + Fp⌫̂i] +
p
2D ⌘T

i (1)

✓̇i =
p

2Dr ⌘
R
i (2)

Here F ex is an excluded-volume repulsive force given by

the WCA potential Vex = 4kBT
h�

�
r

�12 �
�
�
r

�6i
+ kBT if

r < 2
1
6 , and zero otherwise [28], with � the particle di-

ameter. Fp is the magnitude of the self-propulsion force,
⌫̂i = (cos ✓i, sin ✓i), and � = 1

kBT . D and Dr are trans-
lational and rotational di↵usion constants, which in the
low-Reynolds-number regime are related by Dr = 3D

�2 .
The ⌘ are Gaussian white noise variables with h⌘i(t)i = 0
and h⌘i(t)⌘j(t0)i = �ij�(t� t0).

We non-dimensionalized the equations of motion using
� and kBT as basic units of length and energy, and ⌧ = �2

D
as the unit of time. Simulations employed the stochas-
tic Runge-Kutta method [29] with maximum timestep
2⇥10�5⌧ . Simulations mapping the phase diagram were
run with 15, 000 particles until time 100⌧ , while systems
of 128, 000 particles were used to explore kinetics and
material properties. The simulation box was square with
periodic boundaries, with side length chosen to achieve
the desired density. The system is parametrized by two
dimensionless values, the packing fraction � and the
Péclet number Pe = vp

⌧
� , with the propulsion velocity

vp = D�Fp. In this work, we varied � from near-zero to
the close-packing value �cp = ⇡

2
p
3
, and Pe from zero to

150.
Phase Separation and Large Number Fluctuations : We
first show that our results are consistent with prior sim-
ulations [21] and confirm that this system, despite the
absence of aligning interactions, shows the signature be-
haviors of an active fluid. In particular, the active spheres
undergo nonequilibrium clustering (Fig. (1)) and exhibit
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FIG. 3. (color online) Left: Contour map of cluster frac-
tion fc(Pe,�) measured from simulations. The dashed curve
marks the approximate boundary of the phase-separated re-
gion. Right: Cluster fraction as predicted by our analytic
theory (Eq. 3), showing good agreement in the high Pe re-
gion. The apparent disagreement for high �, low Pe occurs
because the identification of clusters becomes ambiguous near
the random close packing density.

giant number fluctuations (Fig. (2b)), similar to other
model active systems [3, 19, 20, 30].
We next establish that this clustering is indeed ather-

mal phase separation by measuring the density in each
phase at di↵erent parameter values (Fig. (2a)). We iden-
tify a critical point near (Pe = 50, � = 0.7) beyond which
the system separates into two phases whose densities are
independent of overall system density and are determined
by the strength of activity alone. The result resembles
the binodal curve of an equilibrium system of mutually
attracting particles undergoing phase separation, with Pe
playing the role of an attraction strength. The physi-
cal mechanism underlying this phenomenon is a density-
dependent suppression of the self-propulsion velocity (see
Fig. S7 in [27]), leading to a negative correction to the
macroscopic di↵usion coe�cient [21, 24, 31].
The Phase-Separated Steady State: To characterize the
steady state, we measured the fraction of particles in the
dense phase at time 100⌧ (Fig. (3)). In contrast with
recent work [21] which reported a single critical density,
we observe that this cluster fraction is a nontrivial func-
tion of the system parameters fc(Pe,�). To understand
this relationship we develop a minimal model in which
this function can be found analytically. Let us assume
the steady state contains a macroscopic cluster which we
take to be close-packed. Particles in the cluster are sta-
tionary in space but their ✓i continue to evolve di↵usively.
We treat the gas as homogeneous and isotropic, and as-
sume that a particle colliding with the cluster surface is
immediately absorbed. This model captures the physics
of the density-dependent propulsion velocity [21, 24, 31]
in a tractable manner (see Fig. S7 in [27]).
Within this model, we can write the rate of absorp-

tion of particles of orientation ✓ from the gas phase as
kin(✓) = 1

2⇡⇢gvp cos ✓, where ⇢g is the gas number den-
sity. Integrating yields the total incoming flux per unit
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Phase space : what shall we expect?
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5EC2M Effets Collectifs & Matière Molle   

Today : Dense phases of Self-Propelled Hard-discs
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At first sight …
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Snapshots from experiments wrt packing fraction
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Structural properties : pair correlation function

u In both cases order emerges for

u However in the active case

Correlation length is smaller

More importantly : order sets in with almost a close packed structure!

29/10/2021
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Structure : pair correlation function g2(r)

ISO SPP

- ISOs behave like equilibrium disks:
Structure appears at Φ = 0,72
Structure is compressed at higher density (peaks are shifted to the left)

- SPPs : a very different scenario
Structure also develops around Φ  = 0,72.
However a close packed structure as soon as it appears => heterogeneous
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Structural properties : orientational order
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[16]. The polar particles are micromachined copper-
beryllium discs (diameter d ¼ 4 mm) with an off-center
tip and a glued rubber skate located at diametrically
opposite positions (total height h ¼ 2 mm). These two
“legs,” with different mechanical response, endow the
particles with a polar axis. Under proper vibration, the
discs perform a persistent random walk, the persistence
length of which is set by the vibration parameters. We also
use plain rotationally invariant discs (the same metal,
diameter, and height), hereafter called the “isotropic” discs.
Here we use a sinusoidal vibration of frequency f ¼ 95 Hz
and relative acceleration to gravity Γ ¼ 2πaf2=g ¼ 2.4.
The motion of the particles is tracked using a standard CCD
camera at a frame rate of 25 Hz. In the following, the unit of
time is set to be the inverse frame rate and the unit length is
the particle diameter. Within these units, the resolution on
the position ~r of the particles is better than 0.05; that on the
orientation ~n is of the order of 0.05 rad. In the present case,
the vibration conditions are such that the persistence length
of an isolated polar particle ξ≃ 5 is 2–3 times smaller than
in [15]; no collective motion sets in and the system is closer
to existing models, for which the dynamical rules guarantee
self-propulsion without alignment [17]. In the following,
particle trajectories are tracked within a circular region of
interest (ROI) of diameter 50, where the long-time averaged
density field is homogeneous. The average packing
fractions ϕ measured inside the ROI range from 0.42 to
0.84, and the total number of particles typically from
1500 to 3000.
The nature of the liquid-solid transition for hard discs

[18] has been a matter of intense debate until recently [19],
when it was shown that the transition occurs with two steps
as in the Kosterlitz-Thouless-Halperin-Nelson et Young
scenario [20–22], but with the first transition between the
liquid phase and the hexatic phase—with orientational but
no translational order—being weakly discontinuous. Here
also, the transition observed for the isotropic particles
follows this quasicontinuous scenario, with an homo-
geneous increase of both ρðrÞ and ψ6ðrÞ, when the packing
fraction ϕ > ϕ† ≃ 0.71. We leave aside the detailed inves-
tigation of this now well-characterized transition to con-
centrate on the case of the polar particles.
The structure of the bidimensional packing is charac-

terized using standard equilibrium tools. Starting from the
particle positions at all times rpðtÞ, we compute the density
field ρðrÞ and its fluctuations as characterized by the pair
correlation function g2ðrÞ,

g2ðrÞ ¼
!P

p≠qδðr − jrq − rpjÞ
2πNr

"
; ð1Þ

where N is the number of particles within the ROI at time t
and h·i denotes the time average. We also compute the
instantaneous orientational order parameter ψ6 at the
particle scale, its fluctuations, and their correlations g6ðrÞ,

ψp
6 ¼

#
1

np

X

hpqi
expð6iθpqÞ

$
; ð2Þ

g6ðrÞ ¼
!P

p≠qψ
p
6ψ

q
6δðr − jrq − rpjÞ

2πNðN − 1Þr

"
; ð3Þ

where
P

hpp0i denotes the sum over the np neighbors of
particle p identified from a Voronoi tessellation, and ½·% a
coarse-graining of the field on the first neighbor’s shell.
Figure 2 synthesizes the structural properties of the polar

disc system and how they compare with the case of the
isotropic discs. The pair correlation function [Fig. 2(a)]
clearly exhibits the signature of an emerging crystal
structure for packing fractions similar to that of the polar
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FIG. 2. Structural properties for ϕ ∈ ½0.42 − 0.84% color coded
from red to blue. Top: Pair correlation function for the (a) polar
and (b) isotropic discs. Inset: zoom on second and third peaks.
Middle: Dependence on ϕ of (c) the mean orientational order
parameter hψ6i and (d) its fluctuations. Bottom: Spatial corre-
lation of ψ6 for the (e) polar and (f) isotropic discs.
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Map of Psi6 at different packing fraction

SPP

ISO

[16]. The polar particles are micromachined copper-
beryllium discs (diameter d ¼ 4 mm) with an off-center
tip and a glued rubber skate located at diametrically
opposite positions (total height h ¼ 2 mm). These two
“legs,” with different mechanical response, endow the
particles with a polar axis. Under proper vibration, the
discs perform a persistent random walk, the persistence
length of which is set by the vibration parameters. We also
use plain rotationally invariant discs (the same metal,
diameter, and height), hereafter called the “isotropic” discs.
Here we use a sinusoidal vibration of frequency f ¼ 95 Hz
and relative acceleration to gravity Γ ¼ 2πaf2=g ¼ 2.4.
The motion of the particles is tracked using a standard CCD
camera at a frame rate of 25 Hz. In the following, the unit of
time is set to be the inverse frame rate and the unit length is
the particle diameter. Within these units, the resolution on
the position ~r of the particles is better than 0.05; that on the
orientation ~n is of the order of 0.05 rad. In the present case,
the vibration conditions are such that the persistence length
of an isolated polar particle ξ≃ 5 is 2–3 times smaller than
in [15]; no collective motion sets in and the system is closer
to existing models, for which the dynamical rules guarantee
self-propulsion without alignment [17]. In the following,
particle trajectories are tracked within a circular region of
interest (ROI) of diameter 50, where the long-time averaged
density field is homogeneous. The average packing
fractions ϕ measured inside the ROI range from 0.42 to
0.84, and the total number of particles typically from
1500 to 3000.
The nature of the liquid-solid transition for hard discs

[18] has been a matter of intense debate until recently [19],
when it was shown that the transition occurs with two steps
as in the Kosterlitz-Thouless-Halperin-Nelson et Young
scenario [20–22], but with the first transition between the
liquid phase and the hexatic phase—with orientational but
no translational order—being weakly discontinuous. Here
also, the transition observed for the isotropic particles
follows this quasicontinuous scenario, with an homo-
geneous increase of both ρðrÞ and ψ6ðrÞ, when the packing
fraction ϕ > ϕ† ≃ 0.71. We leave aside the detailed inves-
tigation of this now well-characterized transition to con-
centrate on the case of the polar particles.
The structure of the bidimensional packing is charac-

terized using standard equilibrium tools. Starting from the
particle positions at all times rpðtÞ, we compute the density
field ρðrÞ and its fluctuations as characterized by the pair
correlation function g2ðrÞ,

g2ðrÞ ¼
!P

p≠qδðr − jrq − rpjÞ
2πNr

"
; ð1Þ

where N is the number of particles within the ROI at time t
and h·i denotes the time average. We also compute the
instantaneous orientational order parameter ψ6 at the
particle scale, its fluctuations, and their correlations g6ðrÞ,
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where
P

hpp0i denotes the sum over the np neighbors of
particle p identified from a Voronoi tessellation, and ½·% a
coarse-graining of the field on the first neighbor’s shell.
Figure 2 synthesizes the structural properties of the polar

disc system and how they compare with the case of the
isotropic discs. The pair correlation function [Fig. 2(a)]
clearly exhibits the signature of an emerging crystal
structure for packing fractions similar to that of the polar
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FIG. 2. Structural properties for ϕ ∈ ½0.42 − 0.84% color coded
from red to blue. Top: Pair correlation function for the (a) polar
and (b) isotropic discs. Inset: zoom on second and third peaks.
Middle: Dependence on ϕ of (c) the mean orientational order
parameter hψ6i and (d) its fluctuations. Bottom: Spatial corre-
lation of ψ6 for the (e) polar and (f) isotropic discs.
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[16]. The polar particles are micromachined copper-
beryllium discs (diameter d ¼ 4 mm) with an off-center
tip and a glued rubber skate located at diametrically
opposite positions (total height h ¼ 2 mm). These two
“legs,” with different mechanical response, endow the
particles with a polar axis. Under proper vibration, the
discs perform a persistent random walk, the persistence
length of which is set by the vibration parameters. We also
use plain rotationally invariant discs (the same metal,
diameter, and height), hereafter called the “isotropic” discs.
Here we use a sinusoidal vibration of frequency f ¼ 95 Hz
and relative acceleration to gravity Γ ¼ 2πaf2=g ¼ 2.4.
The motion of the particles is tracked using a standard CCD
camera at a frame rate of 25 Hz. In the following, the unit of
time is set to be the inverse frame rate and the unit length is
the particle diameter. Within these units, the resolution on
the position ~r of the particles is better than 0.05; that on the
orientation ~n is of the order of 0.05 rad. In the present case,
the vibration conditions are such that the persistence length
of an isolated polar particle ξ≃ 5 is 2–3 times smaller than
in [15]; no collective motion sets in and the system is closer
to existing models, for which the dynamical rules guarantee
self-propulsion without alignment [17]. In the following,
particle trajectories are tracked within a circular region of
interest (ROI) of diameter 50, where the long-time averaged
density field is homogeneous. The average packing
fractions ϕ measured inside the ROI range from 0.42 to
0.84, and the total number of particles typically from
1500 to 3000.
The nature of the liquid-solid transition for hard discs

[18] has been a matter of intense debate until recently [19],
when it was shown that the transition occurs with two steps
as in the Kosterlitz-Thouless-Halperin-Nelson et Young
scenario [20–22], but with the first transition between the
liquid phase and the hexatic phase—with orientational but
no translational order—being weakly discontinuous. Here
also, the transition observed for the isotropic particles
follows this quasicontinuous scenario, with an homo-
geneous increase of both ρðrÞ and ψ6ðrÞ, when the packing
fraction ϕ > ϕ† ≃ 0.71. We leave aside the detailed inves-
tigation of this now well-characterized transition to con-
centrate on the case of the polar particles.
The structure of the bidimensional packing is charac-

terized using standard equilibrium tools. Starting from the
particle positions at all times rpðtÞ, we compute the density
field ρðrÞ and its fluctuations as characterized by the pair
correlation function g2ðrÞ,

g2ðrÞ ¼
!P

p≠qδðr − jrq − rpjÞ
2πNr

"
; ð1Þ

where N is the number of particles within the ROI at time t
and h·i denotes the time average. We also compute the
instantaneous orientational order parameter ψ6 at the
particle scale, its fluctuations, and their correlations g6ðrÞ,

ψp
6 ¼

#
1

np

X

hpqi
expð6iθpqÞ

$
; ð2Þ

g6ðrÞ ¼
!P

p≠qψ
p
6ψ

q
6δðr − jrq − rpjÞ

2πNðN − 1Þr

"
; ð3Þ

where
P

hpp0i denotes the sum over the np neighbors of
particle p identified from a Voronoi tessellation, and ½·% a
coarse-graining of the field on the first neighbor’s shell.
Figure 2 synthesizes the structural properties of the polar

disc system and how they compare with the case of the
isotropic discs. The pair correlation function [Fig. 2(a)]
clearly exhibits the signature of an emerging crystal
structure for packing fractions similar to that of the polar
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FIG. 2. Structural properties for ϕ ∈ ½0.42 − 0.84% color coded
from red to blue. Top: Pair correlation function for the (a) polar
and (b) isotropic discs. Inset: zoom on second and third peaks.
Middle: Dependence on ϕ of (c) the mean orientational order
parameter hψ6i and (d) its fluctuations. Bottom: Spatial corre-
lation of ψ6 for the (e) polar and (f) isotropic discs.
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Structural properties : orientational order
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u The transition to an ordered phase is delayed to much higher density

u The order of the transition is unclear : phase coexistence?
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Dynamics : Mean Square Displacement 

u The abrupt caging observed at equilibrium never takes place!

u The dynamics remains super-diffusive at intermediate timescales

=> dynamics and structure fully decouple

29/10/2021

12EC2M Effets Collectifs & Matière Molle   

Dynamics : Mean Square Displacement

ISO SPP

- ISO behaves like equilibrium disks: transition from diffusion to caging

- SPP, the dynamics is superdiffusive at all densities

12EC2M Effets Collectifs & Matière Molle   

Dynamics : Mean Square Displacement

ISO SPP

- ISO behaves like equilibrium disks: transition from diffusion to caging

- SPP, the dynamics is superdiffusive at all densities

ISO SPP

EC2M Effets Collectifs & Matière Molle   9

Structure : pair correlation function g2(r)

ISOSPP

- ISOs behave like equilibrium disks:
Structure appears at Φ = 0,72
Structure is compressed at higher density (peaks are shifted to the left)

- SPPs : a very different scenario
Structure also develops around Φ  = 0,72.
However a close packed structure as soon as it appears => heterogeneous

Φ  ~ 0,40

Φ  ~ 0,72

Φ  ~ 0,83

Hexagonal close packed 
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Dynamics : structural relaxation

u Indeed a rather weak slowing down of the dynamics …

uThe whole structure relaxes => a very different image from phase coexistence

29/10/2021

discs. However, a closer examination indicates that the
locations of the secondary peaks coincide with those of
the hexagonal close packing (HCP) as soon as they
develop. Hence, the structures forming in the system of
polar particles are densely packed hexagonally ordered
clusters. This contrasts with the isotropic case [Fig. 2(b)],
for which the peaks progressively shift to the right when
further compressing the crystal, which is formed at ϕ†.
Examining the statistics of ψ6 ¼ ð1=NÞ

P
pψ

p
6 , the orienta-

tional order parameter further confirms this observation
[Figs. 2(c)–(d)]. In the case of the polar particles, the
temporal average hψ6i and temporal fluctuations, also
called the susceptibility χ6 ¼ Nvarðψ6Þ, smoothly increase
with the packing fraction. There is no inflection in hψ6iðϕÞ
and no maximum in χ6ðϕÞ, as observed in the case of the
isotropic particles. This behavior reflects that for the polar
discs the probability distribution function (PDF) of ψ6 (not
shown here) displays a bimodal shape, which is absent in
the case of the isotropic discs. These observations all take
root in the fact that the spatial correlation continuously
grows, suggesting the existence of larger and larger
domains; this is in contrast with the case of the isotropic
discs, for which the spatial correlations of ψ6 exhibit a
nonmonotonic dependence on ϕwith a characteristic length
scale that is maximal close to ϕ† [Figs. 2(e)–(f)].
The structural analysis reveals that the emergence of

crystal order in the polar discs system follows a very
different scenario from the one reported at equilibrium or
for the isotropic discs. A coexistence picture, suggestive of
a first-order transition, replaces that of a quasicontinuous
transition. Turning to the study of the dynamics, we shall
see, however, that no part of the system ever freezes; thus,
this picture is not correct either.
The mean-square displacement (MSD) Δ2ðτÞ ¼

hð1=NÞ
P

p½rpðtþ τÞ − rpðtÞ&2i of the polar particles is
superdiffusive until τ ¼ 100, where normal diffusion sets
in, for all packing fractions [Fig. 3(a)]. This is in sharp
contrast to the case of the isotropic discs [Fig. 3(b)], for
which a clear plateau develops above ϕ†, associated with
the trapping of the particles in the crystal structure. As a
matter of fact, the short time dynamics of the polar particles
does present a small sign of trapping at the largest ϕ, but
this is rapidly wiped out by the longer-term superdiffusion.
The decrease in magnitude of the MSD with increasing ϕ
could suggest that larger and larger fractions of the particles
are trapped, while the remaining ones behave as an active
liquid. This is, however, not the correct picture, as
demonstrated by the long-time behavior of the self-part
of the dynamical overlap function Qða; τÞ and of the
dynamical susceptibility χ4ða; τÞ [24],

Qða; τÞ ¼
!
1

N

X

p

exp−
½rpðtþ τÞ − rpðtÞ&2

a2

"
; ð4Þ

χ4ða; τÞ ¼ Nvar
#
1

N

X

p

exp−
½rpðtþ τÞ − rpðtÞ&2

a2

$
; ð5Þ

which we evaluate for a ¼ 1. Instead of developing a
finite value plateau, QðτÞ, pointing at a fraction of
dynamically arrested particles, always rapidly decreases
to zero. All particles move more than one diameter on time
scales of the order of 5000 [Fig. 3(c)], and no part of the
system is dynamically arrested. By comparison, in the case
of the isotropic particles, QðτÞ clearly converges towards a
plateau close to one [Fig. 3(d)] when ϕ > ϕ†. Accordingly,
while the relaxation time τα, defined by QðταÞ ¼ 0.5,
diverges sharply at ϕ† pointing at the crystallization
transition for the isotropic particles, it mildly increases
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FIG. 3. Dynamical properties. Mean square displacement (top)
and self-part of the dynamical overlap function (middle) for
different ϕ for the [(a),(c)] polar and [(b),(d)] isotropic discs. The
dotted line in (c) shows the relaxation of particles included in a
crystalline cluster (see text for details). Bottom: (e) Relaxation
time τα and (f) maximal dynamical susceptibility χmax

4 as a
function of ϕ. Same color code as in Fig. 2.
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discs. However, a closer examination indicates that the
locations of the secondary peaks coincide with those of
the hexagonal close packing (HCP) as soon as they
develop. Hence, the structures forming in the system of
polar particles are densely packed hexagonally ordered
clusters. This contrasts with the isotropic case [Fig. 2(b)],
for which the peaks progressively shift to the right when
further compressing the crystal, which is formed at ϕ†.
Examining the statistics of ψ6 ¼ ð1=NÞ

P
pψ

p
6 , the orienta-

tional order parameter further confirms this observation
[Figs. 2(c)–(d)]. In the case of the polar particles, the
temporal average hψ6i and temporal fluctuations, also
called the susceptibility χ6 ¼ Nvarðψ6Þ, smoothly increase
with the packing fraction. There is no inflection in hψ6iðϕÞ
and no maximum in χ6ðϕÞ, as observed in the case of the
isotropic particles. This behavior reflects that for the polar
discs the probability distribution function (PDF) of ψ6 (not
shown here) displays a bimodal shape, which is absent in
the case of the isotropic discs. These observations all take
root in the fact that the spatial correlation continuously
grows, suggesting the existence of larger and larger
domains; this is in contrast with the case of the isotropic
discs, for which the spatial correlations of ψ6 exhibit a
nonmonotonic dependence on ϕwith a characteristic length
scale that is maximal close to ϕ† [Figs. 2(e)–(f)].
The structural analysis reveals that the emergence of

crystal order in the polar discs system follows a very
different scenario from the one reported at equilibrium or
for the isotropic discs. A coexistence picture, suggestive of
a first-order transition, replaces that of a quasicontinuous
transition. Turning to the study of the dynamics, we shall
see, however, that no part of the system ever freezes; thus,
this picture is not correct either.
The mean-square displacement (MSD) Δ2ðτÞ ¼

hð1=NÞ
P

p½rpðtþ τÞ − rpðtÞ&2i of the polar particles is
superdiffusive until τ ¼ 100, where normal diffusion sets
in, for all packing fractions [Fig. 3(a)]. This is in sharp
contrast to the case of the isotropic discs [Fig. 3(b)], for
which a clear plateau develops above ϕ†, associated with
the trapping of the particles in the crystal structure. As a
matter of fact, the short time dynamics of the polar particles
does present a small sign of trapping at the largest ϕ, but
this is rapidly wiped out by the longer-term superdiffusion.
The decrease in magnitude of the MSD with increasing ϕ
could suggest that larger and larger fractions of the particles
are trapped, while the remaining ones behave as an active
liquid. This is, however, not the correct picture, as
demonstrated by the long-time behavior of the self-part
of the dynamical overlap function Qða; τÞ and of the
dynamical susceptibility χ4ða; τÞ [24],
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which we evaluate for a ¼ 1. Instead of developing a
finite value plateau, QðτÞ, pointing at a fraction of
dynamically arrested particles, always rapidly decreases
to zero. All particles move more than one diameter on time
scales of the order of 5000 [Fig. 3(c)], and no part of the
system is dynamically arrested. By comparison, in the case
of the isotropic particles, QðτÞ clearly converges towards a
plateau close to one [Fig. 3(d)] when ϕ > ϕ†. Accordingly,
while the relaxation time τα, defined by QðταÞ ¼ 0.5,
diverges sharply at ϕ† pointing at the crystallization
transition for the isotropic particles, it mildly increases
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FIG. 3. Dynamical properties. Mean square displacement (top)
and self-part of the dynamical overlap function (middle) for
different ϕ for the [(a),(c)] polar and [(b),(d)] isotropic discs. The
dotted line in (c) shows the relaxation of particles included in a
crystalline cluster (see text for details). Bottom: (e) Relaxation
time τα and (f) maximal dynamical susceptibility χmax

4 as a
function of ϕ. Same color code as in Fig. 2.
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discs. However, a closer examination indicates that the
locations of the secondary peaks coincide with those of
the hexagonal close packing (HCP) as soon as they
develop. Hence, the structures forming in the system of
polar particles are densely packed hexagonally ordered
clusters. This contrasts with the isotropic case [Fig. 2(b)],
for which the peaks progressively shift to the right when
further compressing the crystal, which is formed at ϕ†.
Examining the statistics of ψ6 ¼ ð1=NÞ

P
pψ

p
6 , the orienta-

tional order parameter further confirms this observation
[Figs. 2(c)–(d)]. In the case of the polar particles, the
temporal average hψ6i and temporal fluctuations, also
called the susceptibility χ6 ¼ Nvarðψ6Þ, smoothly increase
with the packing fraction. There is no inflection in hψ6iðϕÞ
and no maximum in χ6ðϕÞ, as observed in the case of the
isotropic particles. This behavior reflects that for the polar
discs the probability distribution function (PDF) of ψ6 (not
shown here) displays a bimodal shape, which is absent in
the case of the isotropic discs. These observations all take
root in the fact that the spatial correlation continuously
grows, suggesting the existence of larger and larger
domains; this is in contrast with the case of the isotropic
discs, for which the spatial correlations of ψ6 exhibit a
nonmonotonic dependence on ϕwith a characteristic length
scale that is maximal close to ϕ† [Figs. 2(e)–(f)].
The structural analysis reveals that the emergence of

crystal order in the polar discs system follows a very
different scenario from the one reported at equilibrium or
for the isotropic discs. A coexistence picture, suggestive of
a first-order transition, replaces that of a quasicontinuous
transition. Turning to the study of the dynamics, we shall
see, however, that no part of the system ever freezes; thus,
this picture is not correct either.
The mean-square displacement (MSD) Δ2ðτÞ ¼

hð1=NÞ
P

p½rpðtþ τÞ − rpðtÞ&2i of the polar particles is
superdiffusive until τ ¼ 100, where normal diffusion sets
in, for all packing fractions [Fig. 3(a)]. This is in sharp
contrast to the case of the isotropic discs [Fig. 3(b)], for
which a clear plateau develops above ϕ†, associated with
the trapping of the particles in the crystal structure. As a
matter of fact, the short time dynamics of the polar particles
does present a small sign of trapping at the largest ϕ, but
this is rapidly wiped out by the longer-term superdiffusion.
The decrease in magnitude of the MSD with increasing ϕ
could suggest that larger and larger fractions of the particles
are trapped, while the remaining ones behave as an active
liquid. This is, however, not the correct picture, as
demonstrated by the long-time behavior of the self-part
of the dynamical overlap function Qða; τÞ and of the
dynamical susceptibility χ4ða; τÞ [24],
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which we evaluate for a ¼ 1. Instead of developing a
finite value plateau, QðτÞ, pointing at a fraction of
dynamically arrested particles, always rapidly decreases
to zero. All particles move more than one diameter on time
scales of the order of 5000 [Fig. 3(c)], and no part of the
system is dynamically arrested. By comparison, in the case
of the isotropic particles, QðτÞ clearly converges towards a
plateau close to one [Fig. 3(d)] when ϕ > ϕ†. Accordingly,
while the relaxation time τα, defined by QðταÞ ¼ 0.5,
diverges sharply at ϕ† pointing at the crystallization
transition for the isotropic particles, it mildly increases
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and self-part of the dynamical overlap function (middle) for
different ϕ for the [(a),(c)] polar and [(b),(d)] isotropic discs. The
dotted line in (c) shows the relaxation of particles included in a
crystalline cluster (see text for details). Bottom: (e) Relaxation
time τα and (f) maximal dynamical susceptibility χmax

4 as a
function of ϕ. Same color code as in Fig. 2.
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A liquid of clusters

u No coarsening : a steady number and distribution of cluster

u An increasing number of fluctuating clusters

u A “percolation” like transition towards a system size dominating cluster

29/10/2021

13EC2M Effets Collectifs & Matière Molle   

A transition or a large crossover dominated by clustering

A highly dynamical cluster phase dominated by aggregation and splitting

13EC2M Effets Collectifs & Matière Molle   

A transition or a large crossover dominated by clustering

A highly dynamical cluster phase dominated by aggregation and splitting
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Proliferation of highly motile defects

29/10/2021
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A first draft for a phase diagram

Active liquid Liquid of clusters Percolating Cluster 
+ Fragmentation

?

�0.71 0.80 0.84

u What about higher packing fraction ?

u What if the boundaries do not frustrate the hexagonal symmetry ?
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particles, passing to N ¼ 1027), one recovers a crystal of
ISO disks without geometric frustration and still far from
melting (ϕ ¼ 0.801).
By contrast, in the case of SPP disks (bottom row) the

structure becomes increasingly disordered, and defects
proliferate. This disorder is reflected in the shape of the
pair correlation functions (rightmost column in Fig. 2),
which do not drop to zero between peaks. A remarkable
feature is the existence of highly ordered sectors, which are
separated by less dense pairs of lines where the local
symmetry is square (N ¼ 1085). One further notices an
increasingly large zone of lower density in the center of the
arena (N ¼ 1085, 1027).
The three regimes foreshadowed in the bottom row

of Fig. 2 (N ¼ 1141, 1133, 1085) also differ in their
dynamics, as can be seen from Fig. 3 and from Videos SI-3

to SI-5 in the Supplemental Material [32]. For the perfect
hexagonal packing, the SPP disks remain trapped at the
same average position, and the corresponding mean square
displacements (MSDs) are those of a frozen structure (see
Video SI-3). For N ¼ 1133, one observes jumps in the
particle trajectories in both the parallel and perpendicular
directions [33]: the particles exchange neighbors, change
layers, and overall diffuse in both directions, as evidenced
by the linear increase with time of their MSDs. Video SI-4
reveals the existence of small but persistent depleted
regions, or loose “droplets,” which rapidly explore all
the system. These droplets are composed of vacancies
and defects, which condensate the volume left by the
removed particles. Such droplets already are complex
objects, which split and merge, the motion of which does
not reduce to that of a specific defect. In this regime, we are

FIG. 2. Experimental data, static aspects: The left panels show time snapshots of isotropic disks (ISO, top row) and of self-propelled
polar disks (SPP, bottom row). The gray scale indicates individual values of the local orientational order parameter ψ6 ∈ ½0; 1#, except
when there are more or less six Voronoi neighbors (red and blue, respectively). The rightmost panels show the corresponding pair
correlation functions, obtained from time averages over trajectories.

FIG. 3. Experimental data, SPP dynamics: The panels on the left show typical trajectories for differentN. Plotted are the perpendicular
and (unwrapped) parallel components of the particle position [33]. The panels on the right show the corresponding mean squared
displacements.
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Active crystal of hard discs close to Ordered Closed Packing
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2 Set up and protocole

In this section I will present the set up and the acquisition methods I used to mesure and compute
the pressure for passive and active hard disks.

2.1 Set up

To shake the particles we use an electromagnetic servo-controlled shaker which drives a glass plate
on which the particles lay. The plate vibrates at a frequency f = 95Hz with an acceleration � = 3, 0g.
On top of the glass plate an other plate in plexiglass confines the particles in 2 dimensions. We laterally
confined the particles in a flower-shaped arena of internal diameter D = 25cm. The flower shape avoid
the stagnation of particule at the boundaries by "reinjecting" them into the bulk. There are two kind
of particles : the isotropic one (ISO) and the anisotropic one (SPP). Both have a cylindrical head in
a copper-beryllium with a diameter of 4mm. The ISOs have a cylindrical foot and the SPPs have an
anisotropic one. It turns that when the plate vibrates the ISOs undergo a random walk while the SPPs
undergo a persistant random walk with a given persistance length due to the asymmetry of there foots.

2mm 4mm2mm 4mm

(a) (b)

(c) (d)

Figure 1 – Passive and active disks behavior. (a) side and bottom view of an active disk with the
built-in polarity ~n. (b) side and bottom view of a passive disk. (c) Individuals trajectories of active disks
at an acceleration � = 2.7, the black and red arrows indicate ~vi and ~ni at selected times. The domaine
area is about 15x15 diameter. (d) Same for the passive disks. Julien Deseigne, Sébastien Léonard,
Olivier Dauchot and Hugues Chaté : Vibrated polar disks : spontaneous motion, binary collisions, and
collective dynamics, Soft matter, 2012, 8, 5629-5639.

To investigate the question of pressure I have fixed a chain to two diametrically opposed points of the
arena. I chose the length of the chain so that it is not completely stretched but free to fluctuate under
plate vibrations or particle collisions. The chain is made of 92 beads tied by rigid rods, the diameter
of the beads is 2mm and the length of a rod is 3mm. Two rods can freely rotate with respect to each
other until they reach a maximum angle of pi/18.

2.2 Acquisition

In this system of hard disks we are interested in two observables : the position of the chain and the
area defined by this position. To have access to these informations a camera takes images of this 2D
system at the frame rate of 1Hz and we typically take 3600 images for each experiment to have correct
averaged quantities. Before the acquisition we wait 20min to ensure that the system have reached a
stationary state. From the images taken I coded a matlab program able to detected the area boundary,
the beads of the chain and then rebuild the whole chain. The programme mainly woks in the following

5
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Numerics
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Experimental conditions

In the noiseless limit

⌧vv̇ = n̂� v + Fint

⌧n ˙̂n = (n̂⇥ v)⇥ n+
p
2D⇠n?

A bona fide flowing crystaline phase !
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Structure and dynamics within the hexagon
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Figure 4. Simulation data: Variation of N (top row) versus
variation of the arena area A (bottom row). Shown are mean
squared displacements obtained from pairs (N,A) with the
common (bulk) volume fractions � = 0.846, 0.878, and 0.890.

once obtained by removing particles (top row) and once
by increasing A (bottom row). The packing fractions are
the same in both rows, but the dynamical behavior is
not – the parallel di↵usion at N = 1126 is replaced by
rotation at the corresponding A = 1027.23: the droplet
regime, where both MSD are di↵usive, does not exist in
the absence of frustration. Removing frustration actu-
ally favors the coherent flow of the crystalline structure.
We also learn that the depleted central region, which is
also present in the absence of frustration, does not result
from the coalescence of the droplets induced by frustra-
tion. It is rather a consequence of the close packing of
the particles along the hexagon boundaries.

We now demonstrate numerically the robustness of the
above observations when increasing the system size. Our
findings are summarized in Fig. 5. Concerning the struc-
ture, the left panel shows that larger systems have higher
principal peaks in the pair correlation function. Indeed
the number of particles sitting on the lines with a local
square symmetry scales linearly with the system size n,
while the number of particles inside the hexagonally or-
dered sectors scales like n2. This remains true even if
we actually observe that the lines are not as regular in
the largest system as in the smaller ones. Regarding the
dynamics, the right panel of Fig. 5 displays the average
parallel displacement per unit time as a function of the
rescaled average distance from the center. When increas-
ing n, the rotation becomes more important in the two
following senses. The magnitude of the rotation increases,
and the central depleted region, where the rotation is
weaker, occupies a smaller fraction of the system. The
overall phenomenology described in the present work is

0
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Figure 5. Simulation data from systems of di↵erent sizes.
Left: pair-correlation functions, right: average displacement
per unit time vs. distance from the center rescaled by the
system size. (A = 1027.23, � = 0.878, �t = 256)

thus stronger in larger systems. Quite remarkable is the
fact that the vortex flow organizes at the scale of the sys-
tem size. From that point of view, alignment actually
promotes system-size correlations in the structure.

We finally check that the flowing crystalline state also
exists within periodic boundary conditions, see video SI-
6. The transient behavior between the disordered initial
condition and the uniformly travelling crystalline state
very well illustrates how the alignment actually reduces
the collision frequency, thereby enforcing the polar order-
ing and the collective motion.

As stated above the experimental system does not
allow for a systematic investigation of the alignment
strength, or the propulsion velocity. We thus turn again
to the numerical model to provide an indicative phase
diagram of the system, see Fig. ??, where the two main
dynamical parameters have been varied, namely D, the
rotational noise amplitude and ↵ the persistence of the
polarity. Here the packing fraction � = xxx is well above
the melting transition at equilibrium and there is no ge-
ometrical frustration. For strong noise no collective mo-
tion takes place and a static, but active, crystal is sta-
bilized. For weak noise, collective motion arises for a
range of ↵ of order xxx. As for the low packing fraction
limit (dashed curve on Fig. ??) too small or too large
persistence of the polarity preclude collective alignment.
It is remarkable that the shape of this phase diagram is
identical to the one obtained and predicted at very low
packing fractions (see also Fig. 2c in Ref. [28]). Note the
non triviality of the density e↵ect: on the large ↵ side of
the alignment transition the density promotes disorder,
while it promotes alignment on the low ↵ side. Finally
note that the rheo-crystal state survives in the absence
of noise, when D = 0, see video SI-7.

In Ref. [30], we reported that increasing the packing
fraction starting from a liquid of SPP disks, the dilute
disordered liquid takes the form of an increasingly com-
plex liquid of almost hexagonal close packed dynamical
clusters, which permanently break and merge. The size
of these clusters increases with the packing fraction, un-

Shear localizes on stacking faults to preserve structural order

The larger, the more ordered, the faster
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Outline: from active liquids to active solids

u Active fluids : a brief overview with a focus on collective motion
mechanical pressure is not a state variable
liquid-gas phase separation takes place in purely repulsive systems
macroscopic flows emerge in the absence of external gradient

u Active solids :
spontaneous flows also take place in crystalline structure
selective & collective actuation emerges in linear elastic systems

29/10/2021



49

Active elastic lattices : the epitome of active solids
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Self alignment

Key ingredients

Active force
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Paul Baconnier (Gulliver) Active Elastic Materials 5 / 31
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Paul Baconnier (Gulliver) Active Elastic Materials 6 / 31

⇡ =
le
la

=
F0

kla
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The one particle problem
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<latexit sha1_base64="j0gxwdog097Sp8Ay16EKKqIfLAg="></latexit>

|u̇i = ⇡|n̂i �M|ui
|ṅi = �KTKM|ui
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An infinite set of fixed points
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From collective motion to collective actuation
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⇡ =
le
la

=
F0

kla

Pinned boundary conditions
=> No zero mode
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Collective actuation in overdamped and harmonic dynamics

29/10/2021

⌧vv̇i = n̂i � vi + F i

⌧nṅi = (n̂i ⇥ vi)⇥ n̂i

u̇i = ⇡n̂i �Mijuj

ṅi = �(n̂i ⇥Mijuj)⇥ n̂i

overdamped
+ harmonic =>

A solid dynamical chiral phase with spontaneously broken parity symmetry



5329/10/2021

Collective actuation takes place on a few selected modes

A non trivial modal selection, rooted in the mode geometries
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N particles in a chain
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FIG. 5. Collective actuation in a zero rest length

chain of N nodes, pinned at both ends. a Aver-
age oscillation frequency ⌦ as a function of ⇡ for N = 7
(continuous line: limit cycle found analytically; horizon-
tal lines (⌦ = 0): range of existence of only stable (con-
tinuous), only unstable (dashed) and coexisting stable and
unstable (dot-dashed) fixed points; open circles: numerical
data; same background color as for Fig. 3). ⇡min

c = 0.152,
⇡max
c = 0.280, ⇡upp

c = 0.304, ⇡FD = 0.195, ⇡CA = 0.426.
(b), Individual oscillation frequencies !i for increasing val-
ues of ⇡ = [0.20, 0.33, 1.0], in the N = 7 chain. Radii of
the symbols code for the average trajectory radius. Black,
respectively gray, contours indicate Ri � 1 and Ri  1.

limit of the springs, the rotational invariance of the1

dynamical equations ensures that the eigenvalues and2

eigenvectors of the dynamical matrix are degenerated by3

pairs of locally orthogonal modes. In such a situation,4

the limit cycle solution, corresponding to the collective5

actuation regime, is found analytically (Supplementary6

Information, section 8.2), leading to a precise transition7

diagram, illustrated here for N = 7 (Fig.5a). When ⇡8

exceeds the threshold value ⇡CA, the limit cycle is sta-9

ble. If ⇡CA  ⇡  ⇡max

c , it coexists with an infinite10

number of stable fixed points. The evolution of their re-11

spective basins of attraction can be largely understood12

by studying the N = 2 case (Supplementary Informa-13

tion section 8.3.1 Fig. S9). For ⇡ < ⇡CA, the dynamics14

leave the limit cycle and become heterogeneous.15

The physical origin of the spatial coexistence lies in the16

normalization constraint of the polarity field, kn̂ik = 1,17

which translates into a strong constraint over the radii of18

rotation, namely Ri � 1 (Supplementary Information,19

section 8.2.3 and 8.2.4). Whenever Ri becomes unity20

the polarity and displacement vectors become parallel,21

freezing the dynamics. The spatial distribution of the22

Ri is set by that of the modes selected by the collective23

actuation, with particles closer to the boundaries having24

typically a smaller radius of rotation than the ones at25

the center. The threshold value ⇡CA, below which the26

dynamics leave the limit cycle, is precisely met when27

the particles at the boundary reach a radius of rotation28

R = 1. For ⇡ < ⇡CA, the competition between outer29

particles, which want to freeze, and the central parti-30

cles, which want to cycle, leads to the sequential layer31

by layer de-actuation, illustrated in Fig. 5b for a linear32

chain with N = 7 and observed experimentally. The33

threshold value ⇡FD is reached when, eventually, the re-34

maining particles at the center freeze and the system35

!
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FIG. 6. Large N triangular lattices. a Spatial and ra-
dial variation of the individual oscillation frequencies !i,
for ⇡ 2 [1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.5, 3.0, 5.0, 10, 30], in the
case N = 1141, color coded from light to dark green.b
Collective actuation fraction fCA as a function of ⇡ for
increasing N (Inset: fCA at onset of collective actuation
saturates to a finite value at large N). c Collective os-
cillation frequency ⌦ as a function of ⇡ for increasing N .
N = 7, 19, 37, 61, 91, 127, 169, 217, 271, 631, 1141, color coded
from light to dark blue.

discontinuously falls into the frozen disordered state. 1

The above analysis provides the theoretical grounds for 2

all our experimental observations and gives our model 3

the credit needed to investigate numerically the effect of 4

the system size and the role of the noise. 5

Preliminary simulations with increasing values of N , 6

while keeping the physical size L constant (Methods), in- 7

dicate that collective actuation subsists for large N . The 8

successive de-actuation steps converge toward a regular 9

variation of both the fraction of nodes activated in the 10

center of the system, fCA, and the collective oscillation 11

frequency, ⌦ (Fig. 6 and Movie 12). At the transition to 12

the frozen disordered state, when ⇡ = ⇡FD, the fraction 13

of actuated nodes drops discontinuously to zero, from a 14

finite value f⇤
CA, which decreases with N , but saturates 15

at large N (Fig. 6b). On the contrary the collective 16

oscillation frequency ⌦ decreases continuously to zero 17

(Fig. 6c). The condensation level remains large, with a 18

condensation fraction close to 60% for a wide range of 19

values of ⇡ (Extended Data, Fig. 2). These results offer 20

promising perspectives for the extension of our work to 21

colloïdal science and material design in general. 22

The role of noise, which was not considered in the nu- 23

merical and theoretical analysis, is another matter of 24

interest. In the frozen disordered regime, the noise is 25

responsible for the angular diffusion of the polarities 26

amongst the fixed points. In the collective actuation 27

the noise level present in the experiment does not al- 28

ter significantly the dynamics. Numerical simulations 29

confirm that there is a sharp transition at a finite noise 30

4
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The transition to collective actuation is discontinuous
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FIG. 5. Collective actuation in a zero rest length

chain of N nodes, pinned at both ends. a Average oscil-
lation frequency ⌦ as a function of ⇡ for N = 4 (continuous
line: limit cycle found analytically; horizontal lines (⌦ = 0):
range of existence of only stable (continuous), only unsta-
ble (dashed) and coexisting stable and unstable (dot-dashed)
fixed points; open circles: numerical data; same background
color as for Fig. 3). (b), Individual oscillation frequencies
!i for increasing values of ⇡ = [0.20, 0.33, 1.0], in the N = 7
chain. Radii of the symbols code for the average trajectory
radius. Black, respectively gray, contours indicate Ri � 1
and Ri  1.

by studying the N = 2 case (Supplementary Information
section 8.3.1 Fig. S9). For ⇡ < ⇡CA, the dynamics leave
the limit cycle and become heterogeneous.

The physical origin of the spatial coexistence lies in the
normalization constraint of the polarity field, kn̂ik = 1,
which translates into a strong constraint over the radii
of rotation, namely Ri � 1 (Supplementary Informa-
tion, section 8.2.3). Whenever Ri becomes unity the
polarity and displacement vectors become parallel, freez-
ing the dynamics. The spatial distribution of the Ri is
set by that of the modes selected by the collective ac-
tuation, with particles closer to the boundaries having
typically a smaller radius of rotation than the ones at
the center. The threshold value ⇡CA, below which the
dynamics leave the limit cycle, is precisely met when
the particles at the boundary reach a radius of rota-
tion R = 1 (Supplementary Information Fig Sx, sec-
tion xxx). For ⇡ < ⇡CA, the competition between outer
particles, which want to freeze, and the central parti-
cles, which want to cycle, leads to the sequential layer
by layer de-actuation, illustrated in Fig. 5b for a linear
chain with N = 7 and observed experimentally. The
threshold value ⇡FD is reached when, eventually, the re-
maining particles at the center freeze and the system
discontinuously falls into the frozen disordered state.

The above analysis provides the theoretical grounds for
all our experimental observations and paves the way for
a further exploration of the recent field of active solids.
Of particular interest are the effect of the system size
and the role of the noise.

Preliminary simulations with increasing values of N ,
while keeping the physical size L constant (Methods), in-
dicate that collective actuation subsists for large N . The
successive de-actuation steps converge toward a regular
variation of both the fraction of nodes activated in the
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center of the system, fCA, and the collective oscillation
frequency, ⌦ (Fig. 6 and Movie 11). At the transition to
the frozen disordered state, when ⇡ = ⇡FD, the fraction
of actuated nodes drops discontinuously to zero, from a
finite value f⇤

CA, which decreases with N , but saturates
at large N (Fig. 6b). On the contrary the collective
oscillation frequency ⌦ decreases continuously to zero
(Fig. 6c). The condensation level remains large, with a
condensation fraction close to 60% for a wide range of
values of ⇡ (Extended Data, Fig. 1).

The role of noise, which was not considered in the nu-
merical and theoretical analysis, is another matter of
interest. In the frozen disordered regime, the noise is
responsible for the angular diffusion of the polarities
amongst the fixed points. In the collective actuation
the noise level present in the experiment does not al-
ter significantly the dynamics. Numerical simulations
confirm that there is a sharp transition at a finite noise
amplitude Dc, below which collective actuation is sus-
tained (Extended Data Fig.2-a). For noise amplitude
much lower than Dc, the noise merely reduces the mean
angular frequency ⌦ (Extended Data Fig.2-b) . Closer
to the transition, the noise allows for stochastic inver-
sions of the direction of rotation, restoring the chiral
symmetry. (Extended Data Fig.2-c).

Finally, it has been shown very recently, that non recip-
rocal interactions, which are made possible in active sys-
tems, generically lead to chiral phases [39], via a peculiar
type of bifurcation, called exceptional points bifurcation.
Here the individual polarity and displacement vectors do
experience a non reciprocal interaction (Methods). It is
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by studying the N = 2 case (Supplementary Information
section 8.3.1 Fig. S9). For ⇡ < ⇡CA, the dynamics leave
the limit cycle and become heterogeneous.

The physical origin of the spatial coexistence lies in the
normalization constraint of the polarity field, kn̂ik = 1,
which translates into a strong constraint over the radii
of rotation, namely Ri � 1 (Supplementary Informa-
tion, section 8.2.3). Whenever Ri becomes unity the
polarity and displacement vectors become parallel, freez-
ing the dynamics. The spatial distribution of the Ri is
set by that of the modes selected by the collective ac-
tuation, with particles closer to the boundaries having
typically a smaller radius of rotation than the ones at
the center. The threshold value ⇡CA, below which the
dynamics leave the limit cycle, is precisely met when
the particles at the boundary reach a radius of rota-
tion R = 1 (Supplementary Information Fig Sx, sec-
tion xxx). For ⇡ < ⇡CA, the competition between outer
particles, which want to freeze, and the central parti-
cles, which want to cycle, leads to the sequential layer
by layer de-actuation, illustrated in Fig. 5b for a linear
chain with N = 7 and observed experimentally. The
threshold value ⇡FD is reached when, eventually, the re-
maining particles at the center freeze and the system
discontinuously falls into the frozen disordered state.

The above analysis provides the theoretical grounds for
all our experimental observations and paves the way for
a further exploration of the recent field of active solids.
Of particular interest are the effect of the system size
and the role of the noise.

Preliminary simulations with increasing values of N ,
while keeping the physical size L constant (Methods), in-
dicate that collective actuation subsists for large N . The
successive de-actuation steps converge toward a regular
variation of both the fraction of nodes activated in the
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center of the system, fCA, and the collective oscillation
frequency, ⌦ (Fig. 6 and Movie 11). At the transition to
the frozen disordered state, when ⇡ = ⇡FD, the fraction
of actuated nodes drops discontinuously to zero, from a
finite value f⇤

CA, which decreases with N , but saturates
at large N (Fig. 6b). On the contrary the collective
oscillation frequency ⌦ decreases continuously to zero
(Fig. 6c). The condensation level remains large, with a
condensation fraction close to 60% for a wide range of
values of ⇡ (Extended Data, Fig. 1).

The role of noise, which was not considered in the nu-
merical and theoretical analysis, is another matter of
interest. In the frozen disordered regime, the noise is
responsible for the angular diffusion of the polarities
amongst the fixed points. In the collective actuation
the noise level present in the experiment does not al-
ter significantly the dynamics. Numerical simulations
confirm that there is a sharp transition at a finite noise
amplitude Dc, below which collective actuation is sus-
tained (Extended Data Fig.2-a). For noise amplitude
much lower than Dc, the noise merely reduces the mean
angular frequency ⌦ (Extended Data Fig.2-b) . Closer
to the transition, the noise allows for stochastic inver-
sions of the direction of rotation, restoring the chiral
symmetry. (Extended Data Fig.2-c).

Finally, it has been shown very recently, that non recip-
rocal interactions, which are made possible in active sys-
tems, generically lead to chiral phases [39], via a peculiar
type of bifurcation, called exceptional points bifurcation.
Here the individual polarity and displacement vectors do
experience a non reciprocal interaction (Methods). It is
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chain. Radii of the symbols code for the average trajectory
radius. Black, respectively gray, contours indicate Ri � 1
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by studying the N = 2 case (Supplementary Information
section 8.3.1 Fig. S9). For ⇡ < ⇡CA, the dynamics leave
the limit cycle and become heterogeneous.

The physical origin of the spatial coexistence lies in the
normalization constraint of the polarity field, kn̂ik = 1,
which translates into a strong constraint over the radii
of rotation, namely Ri � 1 (Supplementary Informa-
tion, section 8.2.3). Whenever Ri becomes unity the
polarity and displacement vectors become parallel, freez-
ing the dynamics. The spatial distribution of the Ri is
set by that of the modes selected by the collective ac-
tuation, with particles closer to the boundaries having
typically a smaller radius of rotation than the ones at
the center. The threshold value ⇡CA, below which the
dynamics leave the limit cycle, is precisely met when
the particles at the boundary reach a radius of rota-
tion R = 1 (Supplementary Information Fig Sx, sec-
tion xxx). For ⇡ < ⇡CA, the competition between outer
particles, which want to freeze, and the central parti-
cles, which want to cycle, leads to the sequential layer
by layer de-actuation, illustrated in Fig. 5b for a linear
chain with N = 7 and observed experimentally. The
threshold value ⇡FD is reached when, eventually, the re-
maining particles at the center freeze and the system
discontinuously falls into the frozen disordered state.

The above analysis provides the theoretical grounds for
all our experimental observations and paves the way for
a further exploration of the recent field of active solids.
Of particular interest are the effect of the system size
and the role of the noise.

Preliminary simulations with increasing values of N ,
while keeping the physical size L constant (Methods), in-
dicate that collective actuation subsists for large N . The
successive de-actuation steps converge toward a regular
variation of both the fraction of nodes activated in the
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center of the system, fCA, and the collective oscillation
frequency, ⌦ (Fig. 6 and Movie 11). At the transition to
the frozen disordered state, when ⇡ = ⇡FD, the fraction
of actuated nodes drops discontinuously to zero, from a
finite value f⇤

CA, which decreases with N , but saturates
at large N (Fig. 6b). On the contrary the collective
oscillation frequency ⌦ decreases continuously to zero
(Fig. 6c). The condensation level remains large, with a
condensation fraction close to 60% for a wide range of
values of ⇡ (Extended Data, Fig. 1).

The role of noise, which was not considered in the nu-
merical and theoretical analysis, is another matter of
interest. In the frozen disordered regime, the noise is
responsible for the angular diffusion of the polarities
amongst the fixed points. In the collective actuation
the noise level present in the experiment does not al-
ter significantly the dynamics. Numerical simulations
confirm that there is a sharp transition at a finite noise
amplitude Dc, below which collective actuation is sus-
tained (Extended Data Fig.2-a). For noise amplitude
much lower than Dc, the noise merely reduces the mean
angular frequency ⌦ (Extended Data Fig.2-b) . Closer
to the transition, the noise allows for stochastic inver-
sions of the direction of rotation, restoring the chiral
symmetry. (Extended Data Fig.2-c).

Finally, it has been shown very recently, that non recip-
rocal interactions, which are made possible in active sys-
tems, generically lead to chiral phases [39], via a peculiar
type of bifurcation, called exceptional points bifurcation.
Here the individual polarity and displacement vectors do
experience a non reciprocal interaction (Methods). It is
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Outlook
u Active matter physics started with the study of collective motion in flocks of birds in 1995.

u In the past 25 years, active liquids have driven a very intense research

physicists have designed a large amount of model experimental systems and 
numerical models

=> the observations of a bunch of striking and interesting phenomena

kinetic and field theories => a rather good understanding of these phenomena

u More recently the study of biological tissues has driven the attention towards highly 
dense systems, eventually behaving as solids rather than liquids

A lot remains to be done to fully understand the physics of active solids.

Tools of (harder) condensed matter physics are likely to become increasingly helpful
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