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1. Introduction
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4Emergence and self-organization

self-organization (aka emergence) is the phenomenon by which:
interacting many-particle (or agent) systems

exhibit large-scale self-organized structures
not explicitly encoded in the agents’ interaction rules

Typical emergent phenomena are

pattern formation
ex: a biological tissue

coordination
ex: a bird flock

self-organization
ex: pedestrian lanes

Emergence is a key process
of life and social systems by which
they self-organize into functional systems
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5Questions

Understand link between:
individual behavior (micro model: ODE or SDE)
& large-scale structure (macro model: PDE)

Requires rigorous passage “micro → macro”

Why macro models ?
Computational time
Analysis: stability, bifurcations, . . .
Data (images) inform on the macro scale

What is special about emergent systems ?
“micro → macro” Boltzmann, Hilbert, . . .

Lions (94), Villani (10), Hairer (14), Figalli (18) . . .

Unusual features
Lack of propagation of chaos
Lack of conservations: particles are “active”
Coexistence of 6= phases
Complex underlying geometrical structures

⇒ revisit classical concepts
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2. Directional coordination: the Vicsek model

Tamàs Vicsek (Budapest)
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7Vicsek model [Vicsek, Czirok, Ben-Jacob, Cohen, Shochet, PRL 95]

Individual-Based (i.e. particle) model
self-propelled ⇒ all particles have same constant speed = 1
align with their neighbors up to some noise
Particle q: position Xq(t) ∈ R

n, velocity direction Vq(t) ∈ S
n−1

Ẋq(t) = Vq(t)

dVq(t) = PV ⊥
q

◦ (kUqdt+
√
2 dBq

t )

Uq =
Jq
|Jq|

, Jq =
∑

j, |Xj−Xq|≤R

Vj

R = interaction range

k = k(|Jq|) = alignment frequency
Jq = local particle flux in interaction disk
Uq = neighbors’ average direction
PV ⊥

q
= Id− Vq ⊗ Vq = orth. proj. on Vq

⊥

◦ = Stratonovitch: guarantees |Vq(t)| = 1, ∀t

“Minimal model” for collective dynamics

R

Xk

Vk
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8Phase transition in Vicsek model
Phase transition

symmetry breaking
disordered → aligned

Order parameter measures alignment

c1 =
∣

∣

∣
N−1

∑

q Vq

∣

∣

∣
, 0 ≤ c1 ≤ 1

c1 vs 1/k c1 vs density band formation

small k large k
Simulations by A. Frouvelle

c1 ∼ 1

Vk Vk

c1 ≪ 1

after [Chaté et al, PRE 2008]
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9Some 3D simulations by Antoine Diez

bands from disorder bands from flock
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10Mean-field model

f(x, v, t) = particle probability density with (x, v) ∈ R
n × S

n−1

satisfies a Fokker-Planck equation

∂tf + v · ∇xf +∇v · (Fff) = ∆vf

Ff (x, v, t) = Pv⊥(kuf (x, t)), Pv⊥ = Id− v ⊗ v

uf (x, t) =
Jf (x, t)

|Jf (x, t)|
, Jf (x, t) =

∫

|y−x|<R

∫

Sn−1

f(y, w, t)w dw dy

Jf (x, t) = particle flux in a neighborhood of x
uf (x, t) = direction of this flux
kuf (x, t) = alignment force (with k = k(|Jf |))
Ff (x, v, t)) = projection of alignment force on {v}⊥
Pv⊥ = Id− v ⊗ v = projection on {v}⊥
∇v·, ∇v: div and grad on S

n−1; ∆v = Laplace-Beltrami on S
n−1
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11Remarks

From particle to mean-field
Requires number of particles N → ∞
Define empirical measure:

fN (x, v, t) = N−1
∑N

q=1 δ(Xq(t),Vq(t))(x, v)

fN → f where f satisfies Fokker-Planck
Formal derivation in [D., Motsch (M3AS 2008)]

Rigorous convergence proof:
Classical: particle models with smooth interaction e.g. [Spohn]

Difficulty here is handling constraint |v| = 1
Done for k(|Jf |) = |Jf | in [Bolley, Canizo, Carrillo (2012)]

Open for k(|Jf |) = 1 (difficulty: controling singularity at Jf = 0)

Existence and uniqueness of solutions to Fokker-Planck
[Gamba, Kang (2016); Figalli, Kang, Morales (2018); Briant, Merino (2020)]

Other collective dynamics models do not normalize velocities
e.g. Cucker-Smale, Motsch-Tadmor → huge literature
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3. Space-homogeneous case: phase
transitions

initiated with

Amic Frouvelle and Jian-Guo Liu

Frouvelle Liu (SIMA 2012), D. Frouvelle Liu (JNLS 2013 & ARMA 2015)

Barbaro D. (DCDS B 2014), Barbaro Cañizo Carrillo D. (MMS 2016)

D. Diez Frouvelle Merino (JNLS 2020), Frouvelle (arxiv 2020)

Amic Jian-Guo
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13Spatially homogeneous case

Forget the space-variable: ∇x ≡ 0: f(v, t), v ∈ S
n−1

∂tf = −∇v · (Fff) + ∆vf := Q(f) = collision operator

Ff = k(|Jf |)Pv⊥uf , uf =
Jf
|Jf |

, Jf =

∫

Sn−1

f(v′, t) v′ dv′

Set: ρ(t) =
∫

f(v, t) dv. Then ∂tρ = 0. So, ρ(t) = ρ = Constant

Global existence results

for k(|Jf |)/|Jf | smooth: [Frouvelle Liu (SIMA 2012),

D. Frouvelle Liu (JNLS 2013 & ARMA 2015]

for k(|Jf |) = 1: [Figalli Kang Morales (ARMA 2018)]

Equilibria: solutions of Q(f) = 0
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14Simulation of convergence to equilibrium

Histogram of
velocity directions
in (−π, π)

positions and velocity
vectors of particles

in periodic box

Simulation by
S. Motsch
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15Equilibria are VMF distributions

(VMF = Von Mises-Fisher) given by

f(v) = ρMκu(v), Mκu(v) =
eκu·v

∫

eκu·v dv

where orientation u ∈ S
n−1 is arbitrary

and concentration parameter κ = k(|Jf |)

Order parameter: c1(κ) =
∫

Mκu(v)u · v dv ∈ [0, 1], c1(κ) ր

Compatibility equation: |Jf | = ρc1(κ) = ρc1(k(|Jf |))
introducing j(κ) = inverse function of k(|Jf |), can be recast in

κ = 0 or ρ =
j(κ)

c1(κ)

Number of roots and local monotony of j(κ)
c1(κ)

determine
number of equilibria and their stability
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16Examples

Ex. 1: k(|J |) = |J |
1+|J | : continuous phase transition

Ex. 2: k(|J |) = |J |+ |J |2: discontinuous phase transition

Ex. 1 Ex.2
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17Free energy

Free energy: F(f) =

∫

f ln f dv − Φ(|Jf |) with Φ′ = k

Free energy dissipation:
d

dt
F(f) = −D(f) ≤ 0

D(f) = τ(|Jf |)
∫

f
∣

∣∇vf − k(|Jf |)(v · uf )
∣

∣

2
dv

f is an equilibrium iff D(f) = 0
Free energy decays with time towards an equilibrium

Unstable VMF are local max or saddle-points of F

Stable VMF are local min of F
F estimates L2-distance to local equilibrium:

‖f(t)− ρMκuf (t)‖2L2 ∼ F(f(t))−F(ρMκuf (t)) ց

Convergence to equilibrium with explicit rate
relies on entropy-entropy dissipation estimates:cf Villani, . . .

D(f) ≥ 2λκ(F(f)−F(Mκu))+ “small”
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4. Space-inhomogeneous case:
macroscopic limit

initiated with

Sebastien Motsch

D. Motsch (M3AS 2008), D. Liu Motsch Panferov (MAA 2013)
D. Dimarco Mac Wang (CMS 2015)

Aceves-Sanchez Bostan Carrillo D. (MBE 2019)

Sebastien Motsch Giacomo Dimarco Pedro Aceves-Sanchez



↑ ↓Pierre Degond - Kinetic & Hydro Models of Active Particle Systems - Nice 19/10/21

19Space-inhomogeneous model

Restore x-dependence:

∂tf + v · ∇xf +∇v · (Fff) = ∆vf, Ff (x, v, t) = Pv⊥(kuf (x, t)),

uf (x, t) =
Jf (x, t)

|Jf (x, t)|
, Jf (x, t) =

∫

|y−x|<R

∫

Sn−1

f(y, w, t)w dw dy

Macroscopic scaling: change variables to x′ = εx, t′ = εt
(x′, t′) = macroscopic space and time variables

Scaled model (dropping primes): ∂tf
ε + v · ∇xf

ε =
1

ε
Q(fε)

where Q(f) collision operator studied above
limit ε→ 0 leads to macroscopic model

When ε→ 0, fε → f s. t. Q(f) = 0 ⇒ f is an equilibrium

Hypothesis: k = Constant ⇒ only equilibria are VMF ρMku

∃ unique VMF equilibrium ; 6 ∃ isotropic equilibrium
No phase transition
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20Macroscopic model

When ε→ 0 fε(x, v, t) → ρ(x, t)Mku(x,t)(v)

space inhomogeneous ⇒ ρ(x, t) and u(x, t) are not constant
ρ and u determined by macroscopic equations

Resulting system is Self-Organized Hydrodynamics (SOH)

∂tρ+ c1∇x · (ρu) = 0

ρ
(

∂tu+ c2(u · ∇x)u
)

+ k−1Pu⊥∇xρ = 0

|u| = 1

Classically: use collision invariants: ψ(v) |
∫

Q(f)ψ dv = 0, ∀f
Requires dimension { CI } = number of equations
Here dimension { CI } = 1 < number of equations (= n)

Generalized collision invariants (GCI) overcome the problem
first proposed in [D Motsch (M3AS 2008)]

GCI ψ satisfies CI property with smaller class of f
Finding ψ involves inverting the “adjoint” of Q
c2 is found as a moment of GCI ψ; c1 = order parameter
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21Remarks
SOH is similar to Compressible Euler eqs. of gas dynamics

Continuity eq. for ρ
Material derivative of u balanced by pressure force −∇xρ

But with major differences:
geometric constraint |u| = 1 (ensured by projection operator Pu⊥)
c2 6= c1: loss of Galilean invariance

Hyperbolic system
but not in conservative form: shock solutions not well-defined

Local existence of smooth solutions in 2D and 3D
[D. Liu Motsch Panferov (MAA 2013)]

Existence / uniqueness of non-smooth solutions open
Rigorous limit ε→ 0 proved: [Jiang Xiong Zhang (SIMA 2016)]

Differences (but also similarities) with the Toner-Tu model
[Toner Tu (PRL 1995)] built on symmetry considerations

Numerical simulations [Motsch Navoret (MMS 2011),

Gamba Haack Motsch (JCP 2015), Dimarco Motsch (M3AS 2016)]
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22Comparison between micro and macro

Micro (Vicsek)

Density (color code)
& velocity directions

Macro (SOH)

Density (color code)
& velocity directions

Simulation by
G. Dimarco,
TBN. Mac,

N. Wang
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5. Conclusion
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24Summary / Perspectives

Emergence = development of large-scale structures

by agents interacting locally without leader

Modelling emergence presents new challenges:

- lack of conservations due to agents’ active character

- possible breakdown of propagation of chaos

Emergence = phase transition from disorder to patterns

analyzed through bifurcation theory

Needed to describe living and social systems complexity

and are source of new fascinating mathematical questions
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